-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfintune.py
206 lines (180 loc) · 6.16 KB
/
fintune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from datasets import load_dataset, DatasetDict, Dataset
import random
from tokenizer import CharTokenizer
from transformers import AutoTokenizer, GPT2LMHeadModel, AutoConfig, GPT2Tokenizer
from transformers import DataCollatorForLanguageModeling
from transformers import Trainer, TrainingArguments
import torch
from tqdm import tqdm
def make_datasets(
tokenizer, Context_length=128, size=10, max_max_num=15, set_num=None, to_print=False
):
def create_one(max_num):
x = []
for i in range(max_num):
if i != 0:
x.append(["+", "-", "*"][random.randint(0, 2)])
# x.append(choose_from("+", "-"))
x.append(random.randint(0, 9))
y = ""
x_str = "".join([str(i) for i in x])
for i in range(max_num - 1):
y += "="
has_multi = -1
for j in range(len(x)):
if x[j] == "*":
has_multi = j
break
if has_multi != -1:
combined = x[has_multi - 1] * x[has_multi + 1]
x[has_multi - 1] = combined
x.pop(has_multi)
x.pop(has_multi)
else:
if x[1] == "+":
combined = x[0] + x[2]
else:
combined = x[0] - x[2]
x[0] = combined
x.pop(1)
x.pop(1)
y += str("".join([str(k) for k in x]))
# print(x_str, y)
x = x_str + "="
y = y[1:]
return {"question": x, "answer": y, "full": x + y, "question_len": len(x)}
def tokenize(element):
tokenized = tokenizer(
element["full"],
return_length=True,
truncation=True,
max_length=Context_length,
padding="max_length",
)
return tokenized
if to_print:
print("Creating datasets... ")
# 创建数据集字典
raw_datasets = []
if set_num is not None:
for i in range(size):
raw_datasets.append(create_one(set_num))
else:
for i in range(size):
raw_datasets.append(create_one(random.randint(2, max_max_num)))
raw_datasets = Dataset.from_list(raw_datasets)
tokenized_datasets = raw_datasets.map(
tokenize, batched=True, remove_columns=raw_datasets.column_names
)
labels_column = []
for i in range(0, len(tokenized_datasets)):
# 生成labels
outputs = ([-100] * len(raw_datasets[i]["question"])) + tokenized_datasets[i][
"input_ids"
][len(raw_datasets[i]["question"]) :]
labels_column.append(outputs)
tokenized_datasets = tokenized_datasets.add_column(
"labels",
labels_column,
)
tokenized_datasets = tokenized_datasets.add_column(
"question",
raw_datasets["question"],
)
tokenized_datasets = tokenized_datasets.add_column(
"answer",
raw_datasets["answer"],
)
tokenized_datasets = tokenized_datasets.add_column(
"full",
raw_datasets["full"],
)
if to_print:
print("Done")
return tokenized_datasets
def pretrain_model():
config = AutoConfig.from_pretrained("./download")
model = GPT2LMHeadModel.from_pretrained("./download", config=config)
model_size = sum(t.numel() for t in model.parameters())
print(f"GPT-2 size: {model_size/1000**2:.1f}M parameters")
return model
args = TrainingArguments(
report_to="none",
output_dir="calculator",
per_device_train_batch_size=32,
per_device_eval_batch_size=32,
logging_steps=200,
gradient_accumulation_steps=1,
num_train_epochs=1,
weight_decay=0.1,
warmup_steps=1_000,
lr_scheduler_type="cosine",
learning_rate=5e-3,
save_steps=3000,
)
def train(model, tokenizer, args, data_collator, tokenized_datasets):
trainer = Trainer(
model=model,
tokenizer=tokenizer,
args=args,
train_dataset=tokenized_datasets,
)
trainer.train()
return trainer
def evaluate(model, tokenized_datasets, tokenizer, Context_length):
right = 0
wrong = []
pbar = tqdm(range(len(tokenized_datasets)))
model.eval()
model.to("cuda")
for i in pbar:
outputs = model(
input_ids=torch.tensor(tokenized_datasets[i]["input_ids"])
.unsqueeze(0)
.to("cuda"),
)
outputs = outputs.logits
outputs = torch.argmax(outputs, dim=-1)
outputs = outputs[0].cpu().detach().numpy().tolist()
outputs = outputs[
len(tokenized_datasets[i]["question"])
- 1 : len(tokenized_datasets[i]["full"])
- 1
]
if tokenizer.decode(outputs) == tokenized_datasets[i]["answer"]:
right += 1
else:
wrong.append(
[
tokenizer.decode(outputs),
tokenized_datasets[i]["answer"],
]
)
for i in range(min(10, len(wrong))):
print(f"{wrong[i][0]}, len: {len(wrong[i][0])}")
print(f"{wrong[i][1]}, len: {len(wrong[i][1])}")
print(f"accuracy: {right/len(tokenized_datasets)}")
def my_token_fn(self, text):
return list(text)
# 加载tokenizer
tokenizer = GPT2Tokenizer.from_pretrained("./download")
tokenizer.tokenize = my_token_fn.__get__(tokenizer, GPT2Tokenizer)
tokenizer.pad_token = tokenizer.eos_token
Context_length = 512
data_collator = DataCollatorForLanguageModeling(
tokenizer,
mlm=False,
) # 它默认是进行mlm,设为False则进行clm
# model = pretrain_model()
# tokenized_datasets = make_datasets(tokenizer, Context_length, size=1000000)
# train(model, tokenizer, args, data_collator, tokenized_datasets)
# model.save_pretrained("model/1")
# print("Done\n")
model = GPT2LMHeadModel.from_pretrained("model/1")
for i in range(3, 17):
print(f"set_num: {i}")
tokenized_datasets = make_datasets(tokenizer, Context_length, size=1000, set_num=i)
evaluate(model, tokenized_datasets, tokenizer, Context_length)
# tokenized_datasets = make_datasets(tokenizer, Context_length, size=10000)
# evaluate(model, tokenized_datasets, tokenizer, Context_length)
# CUDA_VISIBLE_DEVICES=7 python fintune.py