-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPitchPresentation.Rmd
64 lines (47 loc) · 1.75 KB
/
PitchPresentation.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
title: "IRISPredictor: Predicting Iris Flower Species"
author: "Daniel Spencer"
date: "4/5/2019"
output:
ioslides_presentation:
logo: Logo.png
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE)
```
## Introduction to IRISPredictor
- A new application for easy and interactive predictions of iris flower species based on their measurements.
- Useful for casual and professional botanists alike.
<div class="red">
- No more searching through reference books to determine the species!
</div>
## Example
The below plot was created using the code for the new application server.
```{r example, cache = TRUE, message = FALSE}
library(caret)
library(ggplot2)
startTime <- proc.time()
model <- train(iris[1:4], iris$Species)
df <- data.frame(Sepal.Length = mean(iris$Sepal.Length),
Sepal.Width = mean(iris$Sepal.Width),
Petal.Length = mean(iris$Petal.Length),
Petal.Width = mean(iris$Petal.Width))
df <- cbind(df, Species = predict(model, df))
ggplot(iris, aes_string(x = "Sepal.Width", y = "Petal.Length", color = "Species")) +
geom_point() +
labs(x = "Sepal Width", y = "Petal Length") +
scale_color_brewer(palette = "Dark2") +
geom_point(data = df, size = 8, shape = 4)
endTime <- proc.time()
```
## Advantages
- Quick and easy to use
```{r timing, echo = TRUE}
endTime - startTime
```
- Beautiful interactive web interface makes viewing results aesthetically pleasing
- Customizable and easily extensible to other data sets in future
## Conclusions
- The application makes classification of iris flower species a trivial task
- Easy-to-use web interface can be used by anybody without machine learning knowledge
- Thank you for your time and I hope you will invest in IRISPredictor.