Skip to content

Latest commit

 

History

History
236 lines (201 loc) · 5.17 KB

File metadata and controls

236 lines (201 loc) · 5.17 KB

题目描述

给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]...k[m-1] 。请问 k[0]*k[1]*...*k[m-1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

示例 1:

输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1

示例 2:

输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36

提示:

  • 2 <= n <= 58

注意:本题与主站 343 题相同:https://leetcode.cn/problems/integer-break/

解法

方法一:动态规划

我们定义 $dp[i]$ 表示正整数 $n$ 能获得的最大乘积,初始化 $dp[1] = 1$。答案即为 $dp[n]$

状态转移方程为:

$$ dp[i] = max(dp[i], dp[i - j] \times j, (i - j) \times j) \quad (j \in [0, i)) $$

时间复杂度 $O(n^2)$,空间复杂度 $O(n)$。其中 $n$ 为正整数 $n$

class Solution:
    def cuttingRope(self, n: int) -> int:
        dp = [1] * (n + 1)
        for i in range(2, n + 1):
            for j in range(1, i):
                dp[i] = max(dp[i], dp[i - j] * j, (i - j) * j)
        return dp[n]
class Solution {
    public int cuttingRope(int n) {
        int[] dp = new int[n + 1];
        dp[1] = 1;
        for (int i = 2; i <= n; ++i) {
            for (int j = 1; j < i; ++j) {
                dp[i] = Math.max(Math.max(dp[i], dp[i - j] * j), (i - j) * j);
            }
        }
        return dp[n];
    }
}
class Solution {
public:
    int cuttingRope(int n) {
        vector<int> dp(n + 1);
        dp[1] = 1;
        for (int i = 2; i <= n; ++i) {
            for (int j = 1; j < i; ++j) {
                dp[i] = max(max(dp[i], dp[i - j] * j), (i - j) * j);
            }
        }
        return dp[n];
    }
};
func cuttingRope(n int) int {
	dp := make([]int, n+1)
	dp[1] = 1
	for i := 2; i <= n; i++ {
		for j := 1; j < i; j++ {
			dp[i] = max(max(dp[i], dp[i-j]*j), (i-j)*j)
		}
	}
	return dp[n]
}
function cuttingRope(n: number): number {
    if (n < 4) {
        return n - 1;
    }
    const m = Math.floor(n / 3);
    if (n % 3 == 0) {
        return 3 ** m;
    }
    if (n % 3 == 1) {
        return 3 ** (m - 1) * 4;
    }
    return 3 ** m * 2;
}
impl Solution {
    pub fn cutting_rope(n: i32) -> i32 {
        if n < 4 {
            return n - 1;
        }
        let count = (n - 2) / 3;
        (3i32).pow(count as u32) * (n - count * 3)
    }
}
/**
 * @param {number} n
 * @return {number}
 */
var cuttingRope = function (n) {
    if (n < 4) {
        return n - 1;
    }
    const m = Math.floor(n / 3);
    if (n % 3 == 0) {
        return 3 ** m;
    }
    if (n % 3 == 1) {
        return 3 ** (m - 1) * 4;
    }
    return 3 ** m * 2;
};
public class Solution {
    public int CuttingRope(int n) {
        if (n < 4) {
            return n - 1;
        }
        if (n % 3 == 0) {
            return (int) Math.Pow(3, n / 3);
        }
        if (n % 3 == 1) {
            return (int) Math.Pow(3, n / 3 - 1) * 4;
        }
        return (int) Math.Pow(3, n / 3) * 2;
    }
}

方法二:数学

$n \lt 4$,此时 $n$ 不能拆分成至少两个正整数的和,因此 $n - 1$ 是最大乘积。当 $n \ge 4$ 时,我们尽可能多地拆分 $3$,当剩下的最后一段为 $4$ 时,我们将其拆分为 $2 + 2$,这样乘积最大。

时间复杂度 $O(1)$,空间复杂度 $O(1)$

class Solution:
    def cuttingRope(self, n: int) -> int:
        if n < 4:
            return n - 1
        if n % 3 == 0:
            return pow(3, n // 3)
        if n % 3 == 1:
            return pow(3, n // 3 - 1) * 4
        return pow(3, n // 3) * 2
class Solution {
    public int cuttingRope(int n) {
        if (n < 4) {
            return n - 1;
        }
        if (n % 3 == 0) {
            return (int) Math.pow(3, n / 3);
        }
        if (n % 3 == 1) {
            return (int) Math.pow(3, n / 3 - 1) * 4;
        }
        return (int) Math.pow(3, n / 3) * 2;
    }
}
class Solution {
public:
    int cuttingRope(int n) {
        if (n < 4) {
            return n - 1;
        }
        if (n % 3 == 0) {
            return pow(3, n / 3);
        }
        if (n % 3 == 1) {
            return pow(3, n / 3 - 1) * 4;
        }
        return pow(3, n / 3) * 2;
    }
};
func cuttingRope(n int) int {
	if n < 4 {
		return n - 1
	}
	if n%3 == 0 {
		return int(math.Pow(3, float64(n/3)))
	}
	if n%3 == 1 {
		return int(math.Pow(3, float64(n/3-1))) * 4
	}
	return int(math.Pow(3, float64(n/3))) * 2
}