-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSingleDVitTrain.py
280 lines (239 loc) · 8.74 KB
/
SingleDVitTrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# %%
import os
import json
import time
import torch
import matplotlib.pyplot as plt
from torch.nn import DataParallel
from torch.nn import L1Loss
from monai.utils import set_determinism, first
from monai.networks.nets import ViTAutoEnc
from monai.losses import ContrastiveLoss
from monai.data import DataLoader, Dataset
from monai.config import print_config
from monai.transforms import (
LoadImaged,
Compose,
CropForegroundd,
CopyItemsd,
SpatialPadd,
EnsureChannelFirstd,
Spacingd,
OneOf,
ScaleIntensityRanged,
RandSpatialCropSamplesd,
RandCoarseDropoutd,
RandCoarseShuffled,
ScaleIntensityd,
LambdaD,
Transform,
LoadImage,
ConcatItemsd,
NormalizeIntensityd
)
import numpy as np
import argparse
import mlflow
from FourDUnetR.utils import parse_arguments_vit
#%%
args = parse_arguments_vit()
image_max = args.image_max
image_min = args.image_min
max_iterations = args.max_iterations
model_name = args.model_name
threshold = args.threshold
note = args.note
dataset = args.dataset
image_size = args.image_size
train_dir = args.train_dir
val_dir = args.val_dir
# %%
logdir_path = os.path.normpath(f"./logs/{model_name}/")
if not os.path.exists(logdir_path):
os.mkdir(logdir_path)
# Get sorted list of file paths
timage_filenames = sorted([os.path.join(train_dir, f)
for f in os.listdir(train_dir) if f.endswith(".nrrd")])
vimage_filenames = sorted([os.path.join(val_dir, f)
for f in os.listdir(val_dir) if f.endswith(".nrrd")])
# Function to create dictionary with separate image files
def create_multichannel_datalist(filenames):
datalist = []
for filename in filenames:
img_dict = {}
img_dict["image"] = str(filename)
datalist.append(img_dict)
return datalist
# Create the train and validation data lists
train_datalist = create_multichannel_datalist(timage_filenames[5:])
validation_datalist = create_multichannel_datalist(timage_filenames[:5])
# Print the datalist to verify
print(train_datalist[:5], validation_datalist[0:5])
# %%
#image loading transform
# Custom transform to load and stack multiple images
# Define Training Transforms
def threshold_image(image):
return np.where(image < threshold, 0, image)
def switch_shape(image):
return image.permute(2, 0, 1) # Use permute for PyTorch tensors
train_transforms = Compose(
[
LoadImaged(keys=["image"]),
LambdaD(keys=["image"], func=switch_shape),
EnsureChannelFirstd(keys=["image"]),
NormalizeIntensityd(keys=["image"], nonzero=True, channel_wise=True),
ScaleIntensityd(keys=["image"], minv=image_min, maxv=image_max),
LambdaD(keys="image", func=threshold_image),
CropForegroundd(keys=["image"], source_key="image"),
SpatialPadd(keys=["image"], spatial_size=(64, 256, 256)),
RandSpatialCropSamplesd(keys=["image"], roi_size=(
64, image_size, image_size), random_size=False, num_samples=4),
CopyItemsd(keys=["image"], times=2, names=[
"gt_image", "image_2"], allow_missing_keys=False),
OneOf(
transforms=[
RandCoarseDropoutd(
keys=["image"], prob=1.0, holes=6, spatial_size=5, dropout_holes=True, max_spatial_size=32
),
RandCoarseDropoutd(
keys=["image"], prob=1.0, holes=6, spatial_size=20, dropout_holes=False, max_spatial_size=image_size
),
]
),
RandCoarseShuffled(keys=["image"], prob=0.8, holes=10, spatial_size=8),
# Please note that that if image, image_2 are called via the same transform call because of the determinism
# they will get augmented the exact same way which is not the required case here, hence two calls are made
OneOf(
transforms=[
RandCoarseDropoutd(
keys=["image_2"], prob=1.0, holes=6, spatial_size=5, dropout_holes=True, max_spatial_size=32
),
RandCoarseDropoutd(
keys=["image_2"], prob=1.0, holes=6, spatial_size=20, dropout_holes=False, max_spatial_size=image_size
),
]
),
RandCoarseShuffled(keys=["image_2"], prob=0.8,
holes=10, spatial_size=8),
]
)
# Define DataLoader using MONAI, CacheDataset needs to be used
train_ds = Dataset(data=train_datalist, transform=train_transforms)
train_loader = DataLoader(
train_ds, batch_size=1, shuffle=True, num_workers=4)
val_ds = Dataset(data=validation_datalist, transform=train_transforms)
val_loader = DataLoader(val_ds, batch_size=1,
shuffle=True, num_workers=1)
for batch in val_loader:
image = batch['image']
print("Shape of a single data sample:", image.shape)
break
# %%
# Training Config
# Define Network ViT backbone & Loss & Optimizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = ViTAutoEnc(
in_channels=1,
img_size=(64, 64, 64,),
patch_size=(64, 64, 64),
proj_type="conv",
hidden_size=768,
mlp_dim=3072,
)
model = model.to(device)
# if torch.cuda.device_count() > 1:
# model = DataParallel(model)
# print(f"###### Using data parallism {torch.cuda.device_count()}")
# Define Hyper-paramters for training loop
experiment_name = model_name
max_epochs = max_iterations
val_interval = 2
batch_size = 1
lr = 1e-4
epoch_loss_values = []
step_loss_values = []
epoch_cl_loss_values = []
epoch_recon_loss_values = []
val_loss_values = []
best_val_loss = 1000.0
recon_loss = L1Loss()
contrastive_loss = ContrastiveLoss(temperature=0.05)
optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=1e-5)
# %%
for epoch in range(max_epochs):
print("-" * 10)
print(f"epoch {epoch + 1}/{max_epochs}")
mlflow.log_metric("epoch", epoch)
model.train()
epoch_loss = 0
epoch_cl_loss = 0
epoch_recon_loss = 0
step = 0
for batch_data in train_loader:
step += 1
start_time = time.time()
inputs, inputs_2, gt_input = (
batch_data["image"].to(device),
batch_data["image_2"].to(device),
batch_data["gt_image"].to(device),
)
optimizer.zero_grad()
outputs_v1, hidden_v1 = model(inputs)
outputs_v2, hidden_v2 = model(inputs_2)
flat_out_v1 = outputs_v1.flatten(start_dim=1, end_dim=4)
flat_out_v2 = outputs_v2.flatten(start_dim=1, end_dim=4)
r_loss = recon_loss(outputs_v1, gt_input)
cl_loss = contrastive_loss(flat_out_v1, flat_out_v2)
# Adjust the CL loss by Recon Loss
total_loss = r_loss + cl_loss * r_loss
total_loss.backward()
optimizer.step()
epoch_loss += total_loss.item()
step_loss_values.append(total_loss.item())
# CL & Recon Loss Storage of Value
epoch_cl_loss += cl_loss.item()
epoch_recon_loss += r_loss.item()
end_time = time.time()
print(
f"{step}/{len(train_ds) // train_loader.batch_size}, "
f"train_loss: {total_loss.item():.4f}, "
f"time taken: {end_time-start_time}s"
)
mlflow.log_metric('train_loss',total_loss.item())
epoch_loss /= step
epoch_cl_loss /= step
epoch_recon_loss /= step
epoch_loss_values.append(epoch_loss)
epoch_cl_loss_values.append(epoch_cl_loss)
epoch_recon_loss_values.append(epoch_recon_loss)
print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}")
if epoch % val_interval == 0:
print("Entering Validation for epoch: {}".format(epoch + 1))
total_val_loss = 0
val_step = 0
model.eval()
for val_batch in val_loader:
val_step += 1
start_time = time.time()
inputs, gt_input = (
val_batch["image"].to(device),
val_batch["gt_image"].to(device),
)
#print("Input shape: {}".format(inputs.shape))
outputs, outputs_v2 = model(inputs)
val_loss = recon_loss(outputs, gt_input)
total_val_loss += val_loss.item()
end_time = time.time()
total_val_loss /= val_step
val_loss_values.append(total_val_loss)
print(
f"epoch {epoch + 1} Validation avg loss: {total_val_loss:.4f}, " f"time taken: {end_time-start_time}s")
if total_val_loss < best_val_loss:
print(
f"Saving new model based on validation loss {total_val_loss:.4f}")
best_val_loss = total_val_loss
checkpoint = {"epoch": max_epochs, "state_dict": model.state_dict(
), "optimizer": optimizer.state_dict()}
torch.save(checkpoint, os.path.join(logdir_path, experiment_name +"_"+str(image_size)+ "_" + dataset + ".pth"))
print("Done")