-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredictor.py
151 lines (119 loc) · 5.58 KB
/
predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# -*- coding: utf-8 -*-
"""
Created on 18.10.2022
@author: eschlager
Create wear predictions of images using overlap-tile strategy
"""
import argparse
import logging
import os
import sys
import time
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import pickle
import tiler
script_dir = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.sep.join([script_dir, 'src']))
import logging_config
from data_loader import DataLoader
import utils
class ModelPredictor:
def __init__(self, path_to_model, batch_size):
self.path_to_model = path_to_model
self.model = self.load_unet_model()
self.tile_shape = self.model.input_shape[1]
self.wear_mode = self.get_wear_mode()
self.batch_size = batch_size
if self.wear_mode == 3:
self.nr_classes = 3
else:
self.nr_classes = 1
def load_unet_model(self):
logging.info(f"Load model {os.path.abspath(self.path_to_model)}")
model = tf.keras.models.load_model(self.path_to_model, compile=False)
return model
def get_wear_mode(self):
model_args = pickle.load(open(os.path.join(self.path_to_model, "..", "arguments.pkl"), 'rb'))
wear_mode = model_args["wear_mode"]
logging.info(f"Model wear mode: {wear_mode}")
return wear_mode
def predict_image(self, img):
img_tiler = tiler.Tiler(
data_shape=img.shape,
tile_shape=(self.tile_shape, self.tile_shape, img.shape[-1]),
overlap=(184, 184, 0),
channel_dimension=2,
)
mask_tiler = tiler.Tiler(
data_shape=img.shape,
tile_shape=(self.tile_shape, self.tile_shape, self.nr_classes),
overlap=(184, 184, 0),
channel_dimension=2,
)
logging.info(" Perform image padding...")
new_shape, padding = img_tiler.calculate_padding()
img_tiler.recalculate(data_shape=new_shape)
mask_tiler.recalculate(data_shape=new_shape)
padded_img = np.pad(img, padding, mode="reflect")
mask_merger = tiler.Merger(tiler=mask_tiler, window="overlap-tile")
logging.info(f" Perform prediction for all {len(img_tiler)} tiles in batches of size {self.batch_size}...")
for batch_id, batch in img_tiler(padded_img, progress_bar=True, batch_size=self.batch_size):
_, pred_cat = utils.predict_cat(self.model, batch, self.batch_size)
mask_merger.add_batch(batch_id, self.batch_size, pred_cat)
mask_pred = mask_merger.merge(extra_padding=padding, dtype=img.dtype)
return mask_pred
def main(args):
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id)
out_dir = os.path.join('predictions',
os.path.basename(os.path.dirname(args.model_dir)) + '_' + os.path.basename(
os.path.normpath(args.model_dir)),
os.path.basename(os.path.normpath(args.image_dir)))
os.makedirs(out_dir, exist_ok=True)
logging_config.define_root_logger(os.path.join(out_dir, f"log_predict_images.txt"))
logging.info(f"Predictions output directory {os.path.abspath(out_dir)}")
predictor = ModelPredictor(args.model_dir, args.batch_size)
logging.info("Starting Image Wear Predictions...")
files = os.listdir(args.image_dir)
files_img = np.array([e for e in files if not '_masked' in e])
n_samples = len(files_img)
logging.info(f'Found {n_samples} images to load.')
loader = DataLoader(args.image_dir, None, predictor.wear_mode)
for file in os.listdir(args.image_dir):
img_name, ext = os.path.splitext(file)
if not img_name.endswith('_masked'):
logging.info(f'Make predictions for image {file}')
start_time_fit = time.time()
img = loader.load_image(file)
pred_cat = predictor.predict_image(img)
if args.eval_mode == 0:
pred_img = utils.add_mask(np.zeros(img.shape), pred_cat, predictor.wear_mode)
mask_dir = os.path.join(os.path.abspath(out_dir), f"{img_name}_pred.png")
logging.info(f" Save predicted mask as {os.path.abspath(mask_dir)}.")
plt.imsave(mask_dir, pred_img)
plt.close()
if args.eval_mode == 1:
final_img = utils.add_mask(img, pred_cat, predictor.wear_mode)
img_dir = os.path.join(os.path.abspath(out_dir), f"{img_name}_imgpred.png")
logging.info(f" Save image and predicted mask combined as {img_dir}.")
plt.imsave(img_dir, final_img)
plt.close()
dur_fit = time.time() - start_time_fit
logging.info(f"Time to load image, predict, and save: {dur_fit}.")
parser = argparse.ArgumentParser(description="Image Wear Prediction")
parser.add_argument('--gpu_id', default="1,2", type=str)
parser.add_argument("-i", "--image_dir", default="data/raw/dev",
type=str, help="directory of images")
parser.add_argument("-m", "--model_dir",
default="models/finalbn_alittleaug_iou_3_00/trained_model_fold00.tf",
type=str, help="directory of model")
parser.add_argument("-b", "--batch_size", default=16,
type=int, help="batch size used for predicting.")
parser.add_argument("-e", "--eval_mode", default=0,
type=int, help="0: save predicted mask only\n"
"1: save image with predicted wear area only")
args = parser.parse_args()
if __name__ == "__main__":
main(args)