-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
Copy pathjasco_app.py
364 lines (310 loc) · 13.7 KB
/
jasco_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under thmage license found in the
# LICENSE file in the root directory of this source tree.
import argparse
from concurrent.futures import ProcessPoolExecutor
import logging
import os
from pathlib import Path
import subprocess as sp
import sys
from tempfile import NamedTemporaryFile
import time
import typing as tp
import torch
import gradio as gr # type: ignore
from audiocraft.data.audio_utils import f32_pcm, normalize_audio
from audiocraft.data.audio import audio_write
from audiocraft.models import JASCO
# flake8: noqa
MODEL = None # Last used model
SPACE_ID = os.environ.get('SPACE_ID', '')
MAX_BATCH_SIZE = 12
INTERRUPTING = False
MBD = None
# We have to wrap subprocess call to clean a bit the log when using gr.make_waveform
_old_call = sp.call
def _call_nostderr(*args, **kwargs):
# Avoid ffmpeg vomiting on the logs.
kwargs['stderr'] = sp.DEVNULL
kwargs['stdout'] = sp.DEVNULL
_old_call(*args, **kwargs)
sp.call = _call_nostderr
# Preallocating the pool of processes.
pool = ProcessPoolExecutor(4)
pool.__enter__()
def interrupt():
global INTERRUPTING
INTERRUPTING = True
class FileCleaner:
def __init__(self, file_lifetime: float = 3600):
self.file_lifetime = file_lifetime
self.files = [] # type: ignore
def add(self, path: tp.Union[str, Path]):
self._cleanup()
self.files.append((time.time(), Path(path)))
def _cleanup(self):
now = time.time()
for time_added, path in list(self.files):
if now - time_added > self.file_lifetime:
if path.exists():
path.unlink()
self.files.pop(0)
else:
break
file_cleaner = FileCleaner()
def chords_string_to_list(chords: str):
if chords == '':
return []
# clean white spaces or [ ] chars
chords = chords.replace('[', '')
chords = chords.replace(']', '')
chords = chords.replace(' ', '')
chrd_times = [x.split(',') for x in chords[1:-1].split('),(')]
return [(x[0], float(x[1])) for x in chrd_times]
def load_model(version='facebook/jasco-chords-drums-400M'):
global MODEL
print("Loading model", version)
if MODEL is None or MODEL.name != version:
MODEL = None # in case loading would crash
MODEL = JASCO.get_pretrained(version)
def _do_predictions(texts, chords, melody_matrix, drum_prompt, progress=False, gradio_progress=None, **gen_kwargs):
MODEL.set_generation_params(**gen_kwargs)
be = time.time()
# preprocess chords: str to list of tuples
chords = chords_string_to_list(chords)
if melody_matrix is not None:
melody_matrix = torch.load(melody_matrix.name, weights_only=True)
if len(melody_matrix.shape) != 2:
raise gr.Error(f"Melody matrix should be a torch tensor of shape [n_melody_bins, T]; got: {melody_matrix.shape}")
if melody_matrix.shape[0] > melody_matrix.shape[1]:
melody_matrix = melody_matrix.permute(1, 0)
# preprocess drums
if drum_prompt is None:
preprocessed_drums_wav = None
drums_sr = 32000
else:
# gradio loads audio in int PCM 16-bit, we need to convert it to float32
drums_sr, drums = drum_prompt[0], f32_pcm(torch.from_numpy(drum_prompt[1])).t()
if drums.dim() == 1:
drums = drums[None]
drums = normalize_audio(drums, strategy="loudness", loudness_headroom_db=16, sample_rate=drums_sr)
preprocessed_drums_wav = drums
try:
outputs = MODEL.generate_music(descriptions=texts, chords=chords,
drums_wav=preprocessed_drums_wav,
melody_salience_matrix=melody_matrix,
drums_sample_rate=drums_sr, progress=progress)
except RuntimeError as e:
raise gr.Error("Error while generating " + e.args[0])
outputs = outputs.detach().cpu().float()
out_wavs = []
for output in outputs:
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
audio_write(
file.name, output, MODEL.sample_rate, strategy="loudness",
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
out_wavs.append(file.name)
file_cleaner.add(file.name)
print("batch finished", len(texts), time.time() - be)
print("Tempfiles currently stored: ", len(file_cleaner.files))
return out_wavs
def predict_full(model,
text, chords_sym, melody_file,
drums_file, drums_mic, drum_input_src,
cfg_coef_all, cfg_coef_txt,
ode_rtol, ode_atol,
ode_solver, ode_steps,
progress=gr.Progress()):
global INTERRUPTING
INTERRUPTING = False
progress(0, desc="Loading model...")
load_model(model)
max_generated = 0
def _progress(generated, to_generate):
nonlocal max_generated
max_generated = max(generated, max_generated)
progress((min(max_generated, to_generate), to_generate))
if INTERRUPTING:
raise gr.Error("Interrupted.")
MODEL.set_custom_progress_callback(_progress)
drums = drums_mic if drum_input_src == "mic" else drums_file
wavs = _do_predictions(
texts=[text] * 2, # we generate two audio outputs for each input prompt
chords=chords_sym,
drum_prompt=drums,
melody_matrix=melody_file,
progress=True,
gradio_progress=progress,
cfg_coef_all=cfg_coef_all,
cfg_coef_txt=cfg_coef_txt,
ode_rtol=ode_rtol,
ode_atol=ode_atol,
euler=ode_solver == 'euler',
euler_steps=ode_steps)
return wavs
def ui_full(launch_kwargs):
with gr.Blocks() as interface:
gr.Markdown(
"""
# JASCO
This is your private demo for [JASCO](https://github.com/facebookresearch/audiocraft),
A text-to-music model, with temporal control over melodies, chords or beats.
presented at: ["Joint Audio and Symbolic Conditioning for Temporally Controlled Text-to-Music Generation"]
(https://arxiv.org/abs/2406.10970)
"""
)
# Submit | generated
with gr.Row():
with gr.Column():
submit = gr.Button("Submit")
# Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
_ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
with gr.Column():
audio_output_0 = gr.Audio(label="Generated Audio", type='filepath')
audio_output_1 = gr.Audio(label="Generated Audio", type='filepath')
# TEXT | models
with gr.Row():
with gr.Column():
text = gr.Text(label="Input Text",
value="Strings, woodwind, orchestral, symphony.",
interactive=True)
with gr.Column():
model = gr.Radio([
'facebook/jasco-chords-drums-400M', 'facebook/jasco-chords-drums-1B',
'facebook/jasco-chords-drums-melody-400M', 'facebook/jasco-chords-drums-melody-1B',
],
label="Model", value='facebook/jasco-chords-drums-melody-400M', interactive=True)
# CHORDS
gr.Markdown("Chords conditions")
with gr.Row():
chords_sym = gr.Text(label="Chord Progression",
value="(C, 0.0), (D, 2.0), (F, 4.0), (Ab, 6.0), (Bb, 7.0), (C, 8.0)",
interactive=True)
# DRUMS
gr.Markdown("Drums conditions")
with gr.Row():
drum_input_src = gr.Radio(["file", "mic"], value="file",
label="Condition on drums (optional) File or Mic")
drums_file = gr.Audio(sources=["upload"], type="numpy", label="File",
interactive=True, elem_id="drums-input")
drums_mic = gr.Audio(sources=["microphone"], type="numpy", label="Mic",
interactive=True, elem_id="drums-mic-input")
# MELODY
gr.Markdown("Melody conditions")
with gr.Row():
melody_file = gr.File(label="Melody File", interactive=True, elem_id="melody-file-input")
# CFG params
gr.Markdown("Classifier-Free Guidance (CFG) Coefficients:")
with gr.Row():
cfg_coef_all = gr.Number(label="ALL", value=1.25, step=0.25, interactive=True)
cfg_coef_txt = gr.Number(label="TEXT", value=2.5, step=0.25, interactive=True)
ode_tol = gr.Number(label="ODE solver tolerance (defines error approx stop threshold for dynammic solver)",
value=1e-4, step=1e-5, interactive=True)
ode_solver = gr.Radio([
'euler', 'dopri5'
],
label="ODE Solver", value='euler', interactive=True)
ode_steps = gr.Number(label="Steps (for euler solver)", value=10, step=1, interactive=True)
submit.click(fn=predict_full,
inputs=[model,
text, chords_sym, melody_file,
drums_file, drums_mic, drum_input_src,
cfg_coef_all, cfg_coef_txt, ode_tol, ode_tol, ode_solver, ode_steps],
outputs=[audio_output_0, audio_output_1])
gr.Examples(
fn=predict_full,
examples=[
[
"80s pop with groovy synth bass and electric piano",
"(N, 0.0), (C, 0.32), (Dm7, 3.456), (Am, 4.608), (F, 8.32), (C, 9.216)",
"./assets/salience_2.th",
"./assets/salience_2.wav",
],
[
"Strings, woodwind, orchestral, symphony.", # text
"(C, 0.0), (D, 2.0), (F, 4.0), (Ab, 6.0), (Bb, 7.0), (C, 8.0)", # chords
None, # melody
None, # drums
],
[
"distortion guitars, heavy rock, catchy beat",
"",
None,
"./assets/sep_drums_1.mp3",
],
[
"hip hop beat with a catchy melody and a groovy bass line",
"",
None,
"./assets/CJ_Beatbox_Loop_05_90.wav",
],
[
"hip hop beat with a catchy melody and a groovy bass line",
"(C, 0.0), (D, 2.0), (F, 4.0), (Ab, 6.0), (Bb, 7.0), (C, 8.0)",
None,
"./assets/CJ_Beatbox_Loop_05_90.wav",
],
],
inputs=[text, chords_sym, melody_file, drums_file],
outputs=[audio_output_0, audio_output_1]
)
gr.Markdown(
"""
### More details
"JASCO" model will generate a 10 seconds of music based on textual descriptions together with
temporal controls such as chords and drum tracks.
These models were trained with descriptions from a stock music catalog. Descriptions that will work best
should include some level of details on the instruments present, along with some intended use case
(e.g. adding "perfect for a commercial" can somehow help).
We present 4 model variants:
1. facebook/jasco-chords-drums-400M - 10s music generation conditioned on text, chords and drums,400M parameters.
2. facebook/jasco-chords-drums-1B - 10s music generation conditioned on text, chords and drums, 1B parameters.
3. facebook/jasco-chords-drums-melody-400M - 10s music generation conditioned on text, chords, drums and melody,400M parameters.
4. facebook/jasco-chords-drums-melody-1B - 10s music generation conditioned on text, chords, drums and melody, 1B parameters.
See https://github.com/facebookresearch/audiocraft/blob/main/docs/JASCO.md
for more details.
"""
)
interface.queue().launch(**launch_kwargs)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--listen',
type=str,
default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1',
help='IP to listen on for connections to Gradio',
)
parser.add_argument(
'--username', type=str, default='', help='Username for authentication'
)
parser.add_argument(
'--password', type=str, default='', help='Password for authentication'
)
parser.add_argument(
'--server_port',
type=int,
default=0,
help='Port to run the server listener on',
)
parser.add_argument(
'--inbrowser', action='store_true', help='Open in browser'
)
parser.add_argument(
'--share', action='store_true', help='Share the gradio UI'
)
args = parser.parse_args()
launch_kwargs = {}
launch_kwargs['server_name'] = args.listen
if args.username and args.password:
launch_kwargs['auth'] = (args.username, args.password)
if args.server_port:
launch_kwargs['server_port'] = args.server_port
if args.inbrowser:
launch_kwargs['inbrowser'] = args.inbrowser
if args.share:
launch_kwargs['share'] = args.share
logging.basicConfig(level=logging.INFO, stream=sys.stderr)
# Show the interface
ui_full(launch_kwargs)