-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththe3utils.py
337 lines (294 loc) · 12.7 KB
/
the3utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# These are utility functions / classes that you probably dont need to alter.
import argparse
import os
import re
import sys
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from utils import read_image
norm_vfunc = np.vectorize(lambda x: (2*x)/255 - 1)
denorm_vfunc = np.vectorize(lambda x: (255*x + 255) / 2)
def tensorshow(tensor,cmap=None):
img = transforms.functional.to_pil_image(tensor/2+0.5)
if cmap is not None:
plt.imshow(img,cmap=cmap)
else:
plt.imshow(img)
# Disable multiple occurences of the same flag
class UniqueStore(argparse.Action):
def __call__(self, parser, namespace, values, option_string):
if getattr(namespace, self.dest, self.default) is not None:
parser.error(option_string + " appears several times.")
setattr(namespace, self.dest, values)
# Custom format for arg Help print
class CustomFormatter(argparse.HelpFormatter):
def __init__(self,
prog,
indent_increment=2,
max_help_position=100, # Modified
width=100):
super().__init__(prog, indent_increment, max_help_position, width)
def _format_action_invocation(self, action):
if not action.option_strings:
metavar, = self._metavar_formatter(action, action.dest)(1)
return metavar
else:
parts = []
if action.nargs == 0:
parts.extend(action.option_strings)
else:
default = action.dest.upper()
args_string = self._format_args(action, default)
for option_string in action.option_strings:
parts.append('%s' % option_string)
parts[-1] += ' %s' % args_string
return ', '.join(parts)
def check_positive_int(value):
try:
value = int(value)
assert (value > 0)
except Exception as e:
raise argparse.ArgumentTypeError("Positive integer is expected but got: {}".format(value))
return value
def check_positive_float(value):
try:
value = float(value)
assert (value > 0)
except Exception as e:
raise argparse.ArgumentTypeError("Positive float is expected but got: {}".format(value))
return value
def check_non_negative(value):
try:
value = int(value)
assert (value >= 0)
except Exception as e:
raise argparse.ArgumentTypeError("Non negative integer is expected but got: {}".format(value))
return value
# def check_epoch(value):
# try:
# value = int(value)
# assert (value > 0) and (value < 100)
# except Exception as e:
# raise argparse.ArgumentTypeError("Positive integer less than 100 is expected but got: {}".format(value))
# return value
def check_lr(value):
try:
value = float(value)
assert (value >= 0.0001) and (value <= 0.1)
except Exception as e:
raise argparse.ArgumentTypeError("Float between 0.0001 & 0.1 is expected but got: {}".format(value))
return value
# Handles cmd args
def arg_handler():
parser = argparse.ArgumentParser(description='Image Colorization with PyTorch',
formatter_class=CustomFormatter,
add_help=False)
# Optional flags
parser.add_argument("-h", "--help", help="Help message", action="store_true")
parser.add_argument("--gpu", help="Use GPU (default: False)", action="store_true", default=False)
parser.add_argument("--maxepoch", help="Specify max number of epochs for training (default: 100)",
type=check_positive_int, default=100, metavar="EPOCH")
parser.add_argument("--valfreq", help="Specify validation frequency in terms of epochs (default: 1)",
type=check_positive_int, default=1, metavar="FREQ")
# parser.add_argument("--factor", help="Specify learning rate decaying factor (default: 0.1)",
# type=check_positive_int, default=0.1)
# parser.add_argument("--lrpatience", help="Specify patience for learning rate in terms of epochs (default: 0)",
# type=check_non_negative, default=0, metavar="EPOCHS")
# parser.add_argument("--minlr", help="Specify minimum possible learning rate (default: 0.0001)",
# type=check_lr, default=0.0001)
parser.add_argument("--seed", help="Specify seed for pseudorandom initialization (default: 10)",
type=int, default=10)
parser.add_argument("--checkpoint", help="Specify checkpoint for learning to start (default: -)",
type=str, default="")
parser.add_argument("--earlystop", help="Enable early stop (default: False)", action="store_true", default=False)
parser.add_argument("--wpatience", help="Specify patience in epochs for worse accuracy (default: 3, early stop only)",
type=check_non_negative, default=3)
parser.add_argument("--mpatience", help="Specify patience in epochs for non-max accuracy (default: 10, early stop only)",
type=check_non_negative, default=10)
parser.add_argument("--tanh", help="Add tanh activation at the end (default: False)",
action="store_true", default=False)
parser.add_argument("--batchnorm", help="Add batch norm layer after each intermediate conv layer (default: False)",
action="store_true", default=False)
# Required flags
enable_exec = ("-h" not in sys.argv)
group = parser.add_argument_group(title='required arguments')
group.add_argument("-p", "--pipe", help="Specify pipeline execution mode", type=str,
choices=['train', 'test', 'full'], required=enable_exec, action=UniqueStore)
group.add_argument("-bs", "--batchsize", help="Specify batch size (e.g. 16)", type=check_positive_int,
metavar="BATCH", required=enable_exec)
# group.add_argument
group.add_argument("-cl", "--clayers", help="Specify number of convolutional layers (e.g. 1, 2, 4)",
type=check_positive_int, metavar="CONV", required=enable_exec)
group.add_argument("-ks", "--kernelsize", help="Specify kernel size (e.g. 3, 5)", type=check_positive_int,
metavar="SHAPE", required=enable_exec)
group.add_argument("-kc", "--kernelcount", help="Specify number of kernels (e.g. 2, 4, 8)", type=check_positive_int,
metavar="COUNT", required=enable_exec)
group.add_argument("-lr", "--learnrate", help="Specify learning rate (e.g. in range (0.0001, 0.1))",
type=check_positive_float, metavar="LR", required=enable_exec)
args = parser.parse_args()
# Print help if -h is used
if args.help:
parser.print_help()
return
return args
class HW3ImageFolder(torchvision.datasets.ImageFolder):
"""A version of the ImageFolder dataset class, customized for the super-resolution task"""
def __init__(self, root, device):
super(HW3ImageFolder, self).__init__(root, transform=None)
self.device = device
def prepimg(self,img):
return (transforms.functional.to_tensor(img)-0.5)*2 # normalize tensorized image from [0,1] to [-1,+1]
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (grayscale_image, color_image) where grayscale_image is the decolorized version of the color_image.
"""
color_image,_ = super(HW3ImageFolder, self).__getitem__(index) # Image object (PIL)
grayscale_image = torchvision.transforms.functional.to_grayscale(color_image)
return self.prepimg(grayscale_image).to(self.device), self.prepimg(color_image).to(self.device)
def visualize_batch(inputs,preds,targets,save_path=''):
inputs = inputs.cpu()
preds = preds.cpu()
targets = targets.cpu()
plt.clf()
bs = inputs.shape[0] if inputs.shape[0] < 5 else 5
for j in range(bs):
plt.subplot(3,bs,j+1)
assert(inputs[j].shape[0]==1)
tensorshow(inputs[j],cmap='gray')
plt.subplot(3,bs,bs+j+1)
tensorshow(preds[j])
plt.subplot(3,bs,2*bs+j+1)
tensorshow(targets[j])
if save_path is not '':
plt.savefig(save_path)
else:
plt.show(block=True)
def save_stats(filename, stats, **kwargs):
path = kwargs.get('path', '')
with open(path + filename, "w+") as file:
for key, value in stats.items():
file.write("{}: {}\n".format(key, value))
def load_stats(path):
stats = {}
regex = r'(\w*): (.*)'
with open(path, "r") as file:
lines = "".join(file.readlines())
params = re.findall(regex, lines)
for key, value in params:
stats[key] = eval(value)
return stats
def draw_train_val_plots(train_losses, val_losses, **kwargs):
# Epoch lengths
l_train = len(train_losses)
l_val = len(val_losses)
if (not l_train) or (not l_val):
print("WARNING: No data to plot loss vs epoch!")
return
combined = kwargs.get("combined", True)
save = kwargs.get("save", True)
show = kwargs.get("show", True)
plt.close()
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.set_title('Loss vs Epoch Graph')
ax.set_ylabel("Loss")
ax.set_xlabel("Epoch")
try:
# Plot for training
train_epochs = range(1, l_train+1)
prepare_plot(ax, train_losses, train_epochs, 'blue', 'train')
# If separate figures desired
if not combined:
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
# Plot for validation
val_freq = int(l_train / l_val)
val_epochs = range(val_freq, l_train+1, val_freq)
prepare_plot(ax, val_losses, val_epochs, 'orange', 'validation')
except Exception as e:
print("WARNING: " + str(e))
return
if save:
path = kwargs.get("path", None)
if path:
fig.savefig(path + "/" + 'l_vs_e_plot.png')
else:
fig.savefig('l_vs_e_plot.png')
print("WARNING: Invalid path to save, plot saved under current directory!")
if show:
plt.show()
def draw_accuracy_plot(accuracies, train_epoch, **kwargs):
l_acc = len(accuracies)
if (not l_acc):
print("WARNING: No data to plot accuracy vs epoch!")
return
save = kwargs.get("save", True)
show = kwargs.get("show", True)
plt.close()
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.set_title('Accuracy vs Epoch Graph')
ax.set_ylabel("Accuracy")
ax.set_xlabel("Epoch")
eval_freq = int(train_epoch / l_acc)
eval_epochs = range(eval_freq, train_epoch+1, eval_freq)
try:
prepare_plot(ax, accuracies, eval_epochs, 'red', 'accuracy')
except Exception as e:
print("WARNING: " + str(e))
return
if save:
path = kwargs.get("path", None)
if path:
fig.savefig(path + "/" + 'a_vs_e_plot.png')
else:
fig.savefig('a_vs_e_plot.png')
print("WARNING: Invalid path to save, plot saved under current directory!")
if show:
plt.show()
def prepare_plot(ax, losses, epochs, color, label):
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
ax.plot(epochs, losses, "o-", color='tab:'+color, label=label)
ax.grid(True)
ax.legend()
def write_preds(path, preds, type):
# Change the order of the axes
preds = preds.permute(0, 2, 3, 1).numpy()
preds = denorm_vfunc(preds)
filename = "estimations_" + type
print('\nSaving estimations to file {}...'.format(filename))
np.save(path + "/" + filename, preds)
print('Saved!')
def get_file_paths(top_folder, sub_folder, sub_sub_folder):
"""
Find all files under given path in the form of:
top_folder
- sub_folder:
- images
Returns list of file paths
"""
file_paths = []
foldername = top_folder + "/" + sub_folder + "/" + sub_sub_folder + "/"
images = os.listdir(foldername)
# images = sorted(images, key=lambda x: int(os.path.splitext(x)[0])): full sorted
image_paths = [foldername + image for image in sorted(images)]
return image_paths
def write_image_paths(image_paths):
with open("img_names.txt", "w+") as file:
file.write('\n'.join(image_paths))
def evaluate(preds, targets):
preds, targets = denorm_vfunc(preds.cpu().numpy()), denorm_vfunc(targets.cpu().numpy())
im_size = np.prod(preds.shape[1:])
accs_per_image = (np.abs(targets - preds) < 12).sum(axis=(1,2,3)) / im_size
avg_acc = np.mean(accs_per_image)
return avg_acc