-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFinal.tex
592 lines (477 loc) · 25.8 KB
/
Final.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
\documentclass[12pt,landscape]{article}
\usepackage[landscape]{geometry}
\input{../../MathHeader}
% Turn off header and footer
\pagestyle{empty}
% print only section numbers
\setcounter{secnumdepth}{1}
\setlength{\parindent}{0pt}
\setlength{\parskip}{0pt plus 0.5ex}
\begin{document}
\raggedright
\footnotesize
\begin{multicols}{3}
% multicol parameters
% These lengths are set only within the two main columns
%\setlength{\columnseprule}{0.25pt}
\setlength{\premulticols}{1pt}
\setlength{\postmulticols}{1pt}
\setlength{\multicolsep}{1pt}
\setlength{\columnsep}{2pt}
\begin{flushleft}
\large{
\underline{MA1521 Cheat Sheet} \\
\texttt{by Howard Liu} \\
AY2019/20 Semester 1
}
\end{flushleft}
\section{Basics of Probability}
\subsection{1-34 Operation of Events}
Refer to CS1231S page 2 column 2 \textbf{"Set Properties"}.
\subsection{1-107 Binomial Coefficient}
\begin{enumerate}
\item ${n \choose r} = {n \choose n-r}$ for $r = 0, 1, \dots, n$
\item ${n \choose r} = {n-1 \choose r} + {n-1 \choose r-1}$ for $1 \leq r \leq n$
\item ${n \choose r} = 0$ for $r < 0$ or $r > n$
\end{enumerate}
\subsection{1-128 Axioms of Probability}
For each event $A$ of the sample space $S$ we assume that a number $Pr(A)$, which is called the \textbf{probability} of the event $A$, is defined and satisfies the following three axioms:
\begin{enumerate}
\item $0 \leq Pr(A) \leq 1$
\item $Pr(S) = 1$
\item if $A_1$, $A_2$, $\dots$ are \textbf{mutually exclusive} events (that is, $A_i \cap A_j = \emptyset$ when $i \neq j$), then
$$ Pr(\bigcup\limits_{i = 1}^{\infty} A_i) = \sum_{i = 1}^{\infty} Pr(A_i) $$
\end{enumerate}
\subsection{1-141 Probability Properties}
For any two events $A$ and $B$,
$$ Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B) $$
\subsection{1-144 The Inclusion-Exclusion Principle}
$ Pr(\bigcup\limits_{i = 1}^{n} A_i) = \sum_{i=1}^{n} Pr(A_i) - \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} Pr(A_i \cap A_j) + \sum_{i=1}^{n-2} \sum_{j=i+1}^{n-1} \sum_{k=j+1}^{n} Pr(A_i \cap A_j \cap A_k) - \dots + (-1)^{n+1} Pr(\bigcap\limits_{i = 1}^{n} A_i) $
\subsection{1-194 Conditional Probability}
The conditional probability of $B$ given $A$, is defined as
$$ Pr(B|A) = \frac{Pr(A \cap B)}{Pr(A)} \text{ , if } Pr(A) \ne 0 $$
If events $B_1, B_2$ are \textbf{mutually exclusive} events, we have
$$ Pr(B_1 \cup B_2 | A) = Pr(B_1|A) + Pr(B_2|A) $$
\subsection{1-216 Multiplication Rule}
If we have 3 events $A$, $B$ and $C$, we have
$$ Pr(A \cap B \cap C) = Pr(A) Pr(B|A) Pr(C|A \cap B) $$
providing that $Pr(A \cap B) > 0$
\subsection{1-243 Bayer's Theorem}
$$ Pr(A|B) = \frac{Pr(A) Pr(B|A)}{Pr(B)} $$
\subsection{1-271 Independent Events}
Two events $A$ and $B$ are independent iff.
$$ Pr(A \cap B) = Pr(A) Pr(B) $$
\subsection{1-273 Properties of Independent Events}
\begin{enumerate}
\item $Pr(A|B) = Pr(A)$ and $Pr(B|A) = Pr(B)$
\item When two events (each with probability greater than 0) are \textbf{independent}, they cannot be \textbf{mutually exclusive}. Vice versa.
\item The sample space $S$ and the empty set $\emptyset$ are independent of any events.
\item If $A \subset B$, then $A$ and $B$ are dependent unless $B = S$.
\item Properties of independence cannot be shown on a Venn diagram.
\item If $A$ and $B$ are independent, so are $A$ and $B'$, $A'$ and $B$, $A'$ and $B'$.
\end{enumerate}
\subsection{1-288 Pairwise and Mutually Independence}
Mutually independence implies pairwise independence. However, the \textbf{reverse} does not hold - pairwise independence does not imply mutually independence.
\section{Concepts of Random Variables}
\subsection{2-12 Equivalent Events}
Two events $A$ and $B$ are equivalent iff. \textbf{$A$ consists of all sample points, $s$, in $S$ for which $X(s) \in B$}.
\subsection{2-22 Probability Function}
\label{2-22}
The probability of $X = x_i$ denoted by $f(x_i)$ must satisfy the following two conditions
\begin{enumerate}
\item $f(x_i) \geq 0$ for all $x_i$.
\item $\sum_{i = 1}^{\infty} f(x_i) = 1$.
\end{enumerate}
\subsection{2-44 Probability Density Function}
\label{2-44}
For any $c$ and $d$ s.t. $c < d$,
$$ Pr(c \leq X \leq d) = \int_{c}^{d}f(x)dx $$
Note: for any specified value of $X$, say $x_0$, we have $Pr(X = x_0) = Pr(x_0 \leq X \leq x_0) = \int_{x_0}^{x_0} f(x)dx = 0$
\subsection{2-60 Cumulative Distribution Function}
For c.d.f, we have definition $F(x) = Pr(X \leq x)$.
If it is discrete random variable, then
$$ F(x) = \sum_{t \leq x} f(t) = \sum_{t \leq x} Pr(X = t) $$
If it is continuous random variable, then
$$ F(x) = \int_{-\infty}^{x} f(t)dt $$
Remark: $F(x)$ is non-decreasing.
\subsection{2-64 Derive p.f and p.d.f from c.d.f}
For a continuous random variable,
$$ f(x) = \frac{dF(x)}{dx} $$
if the derivative exists.
Also, we have $Pr(a \neq X \neq b) = Pr(a < X \neq b) = F(b) - F(a)$ for CRV.
\subsection{2-87 Expected Values (Mean)}
For DRV, we define the \textbf{mean or expected value} of $X$, denoted by $E(X)$ or $\mu_X$ as:
$$ \mu_X = E(X) = \sum_{x} x f_X(x) $$
Remark: $E(X)$ does not necessary to be a value of $X$.
For CRV, it is defined as:
$$ \mu_X = E(X) = \int_{-\infty}^{\infty} x f_X(x) dx $$
Remark: Expectation of a RV exists provided the sum or integral exists.
\subsection{2-103 Expectation of a Function of a RV}
For DRV and CRV respectively,
\begin{enumerate}
\item $E[g(X)] = \sum_x g(x)f_X(x)$
\item $E[g(X)] = \int_{\infty}^{\infty} g(x)f_X(x)dx$
\end{enumerate}
Special Case: $V(X)$ below and \textbf{k-th moment of X} which is $E(X^k)$
\subsection{2-104 Variance}
When $g(x) = (X - \mu_X)^2$, $E(g(x))$ is called the \textbf{variance} of X.
$$ \sigma_X^2 = V(X) = E[(X - \mu_X)^2] $$
\textbf{Remarks}:
\begin{enumerate}
\item $V(X) \geq 0$
\item $V(X) = E(X^2) - [E(X)]^2$
\item Its principle square root is called \textbf{standard deviation}.
\end{enumerate}
\subsection{2-122 Properties of Expectation}
When $a$ and $b$ are constants,
\begin{enumerate}
\item $E(aX + b) = aE(X) + b$
\item $V(aX + b) = a^2V(X)$
\end{enumerate}
\subsection{2-137 Chebyshev's Inequality}
Let $X$ be a random variable (DRV or CRV) with $E(X) = \mu$ and $V(X) = \sigma^2$, for any positive
number $k$, we have:
$$ Pr(\abs{X - \mu} \geq k\sigma) \leq \frac{1}{k^2} $$
Alternatively,
$$ Pr(\abs{X - \mu} \leq k\sigma) \leq 1 - \frac{1}{k^2} $$
Remarks: This applies for \textbf{all} distribution with finite mean and variance. Only a boundary
is given and there is no guarantee that actual value is close to this boundary.
\section{2D RV}
\subsection{3-10 Joint p.f./p.d.f for DRVs}
\begin{enumerate}
\item $f_{X,Y}(x_i, y_i) \geq 0$
\item $\sum_{i = 1}^{\infty} \sum_{j = 1}^{\infty} f_{X,Y}(x_i, y_i) = 1$
\end{enumerate}
\subsection{3-21 Joint p.f./p.d.f for CRVs}
\begin{enumerate}
\item $f_{X,Y}(x,y) \geq 0$ for all $(x, y) \in R_{X,Y}$
\item $\int\int_{(x,y) \in R_{X,Y}} f_{X,Y}(x,y)dxdy = 1$
\end{enumerate}
\subsection{3-30 Marginal Probability}
For DRV:
$$ f_X(x) = \sum_y f_{X,Y}(x,y) \text{ and } f_Y(y) = \sum_x f_{X,Y}(x,y) $$
For CRV:
$$ f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy \text{ and } f_Y(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dx $$
\subsection{3-41 Conditional Distribution of 2D RV}
Conditional distribution of Y \textbf{fiven that $X = x$} is given by:
$$ f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)} \text{ , if } f_X(x) > 0 $$
Remarks: All requirements for 1D p.f/p.d.f still applies (see \nameref{2-22} and \nameref{2-44} above).
\subsection{3-72 Uniformly Distributed}
When we say $X$ and $Y$ are uniformly distributed over some area, it means that $f_{X,Y}$ is a constant
within this boundary. We can let it be k, and use summation/integration in 3-10 or 3-21 to find this value.
\subsection{3-84 Independent 2D RVs}
Two RVs are said to be independent iff.
$$ f_{X,Y}(x,y) = f_X(x)f_Y(y) \text{ , for all } x,y $$
\subsection{3-108 Expectation for 2D RVs}
The expectation of $g(X,Y)$ is defined as
$$
E[g(X,Y)] = \begin{cases}
\sum_x \sum_y g(x,y)f_{X,Y}(x,y) \text{ , for DRVs} \\
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y)f_{X,Y}(x,y) dxdy \text{ , for CRVs}
\end{cases}
$$
\subsection{3-109 Covariance}
When $g(X,Y) = (X - \mu_X)(Y - \mu_Y)$, it becomes the definition of \textbf{covariance} between two RVs.
$$ Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] $$
Remarks ($a,b,c,d$ are constants):
\begin{enumerate}
\item $Cov(X,Y) = E(XY) - \mu_X\mu_Y$
\item If $X$ and $Y$ are \textbf{independent}, then $Cov(X,Y) = 0$. However, the reverse is not true.
\item $Cov(aX+b, cX+d) = acCov(X,Y)$
\item $V(aX+bY) = a^2V(X) + b^2V(Y) + 2abCov(X,Y)$
\end{enumerate}
\subsection{3-112 Correlation Coefficient}
The \textbf{Correlation Coefficient} of $X$ and $Y$, denoted by $Cor(X,Y)$, $\rho_{X,Y}$ or $\rho$, is defined by:
$$ \rho_{X,Y} = \frac{Cov(X,Y)}{\sqrt{V(X)}\sqrt{V(Y)}} $$
Remarks:
\begin{enumerate}
\item $-1 \leq \rho \leq 1$
\item $\rho$ is a measure of the \textbf{degree if linear relationship} between $X$ and $Y$.
\item If $X$ and $Y$ are independent, then $\rho = 0$. However, the reverse is not true.
\end{enumerate}
\section{Special Probability Distributions}
\subsection{4-4 Discrete Uniform Distribution}
All $k$ random variables all have the same probability. Hence, we have the p.f.:
$$ f_X(x) = \frac{1}{k} \text{ for } x = x_1, x_2, \dots, x_k $$
and 0 otherwise.
\textbf{Mean and variance}:
\begin{itemize}
\item $\mu = \frac{1}{k} \sum_{i=1}^k x_i$
\item $\sigma^2 = \frac{1}{k}\sum_{i=1}^k (x_i - \mu)^2$ or
$\sigma^2 = \frac{1}{k}(\sum_{i=1}^k x_i^2) - \mu^2$
\end{itemize}
\subsection{4-10 Bernoulli Distribution}
There are only two outcomes, 0 and 1. We have p.f.:
$$ f_X(x) = p^x(1-p)^{1-x} \text{ , } x = 0,1 $$
where $p$ is a parameters and $0 < p < 1$; 0 otherwise.
\textbf{Mean and variance}:
\begin{itemize}
\item $\mu = p$
\item $\sigma^2 = p(1-p) = pq$
\end{itemize}
\subsection{4-20 Binomial Distribution}
For an RV $X$ having a \textbf{binomial distribution}, it can be seen as the sum of
$n$ \textbf{independent Bernoulli trials}:
$$ X = Y_1 + Y_2 + \dots + Y_n \text{ , where $Y_i$ has Bern. Dist. with p} $$
Then we have its p.f.:
$$ f_X(x) = {n \choose x}p^x(1-p)^{n-x} = {n \choose q}p^x q^{n-x} $$
\textbf{Mean and variance}:
\begin{itemize}
\item $\mu = np$
\item $\sigma^2 = p(1-p) = npq$
\end{itemize}
\subsection{4-39 Negative Binomial Distribution}
NBD interests in the $k$-th success occurs on the $x$-th trial. We have p.f.:
$$ Pr(X = x) = f_X(x) = {x-1 \choose k-1} p^k q^{x-k} $$
For $x = k, k+1, k+2, \dots$
\textbf{Mean and variance}:
\begin{itemize}
\item $\mu = \frac{k}{p}$
\item $\sigma^2 = \frac{(1-p)k}{p^2}$
\end{itemize}
\subsection{4-51 Poisson Distribution}
This describes the number of success $X$ occuring \textbf{during a given time interval or in a speficied region}.
\textbf{Properties}:
\begin{enumerate}
\item $X$ in one time interval or region is \textbf{independent} of those in other \textbf{disjoint} time
interval or region of space.
\item $f_X(x)$ during a \textbf{very short time or in a very small region} is proportional to the length
of the time interval or the size of the region.
\item $f_X(x)$ for $x > 1$ is negligible in the condition of (2) above.
\end{enumerate}
\textbf{P.F.}:
$$ f_X(x) = \frac{e^{-\lambda}\lambda^x}{x!} \text{ for } x = 0, 1, 2, 3, \dots $$
where $\lambda$ is the average number of successes occuring in the given time interval or specified region.
\textbf{Mean and variance}:
\begin{itemize}
\item $\mu = \lambda$
\item $\sigma^2 = \lambda$
\end{itemize}
\subsection{4-73 Poisson Approximation to Binomial D.}
If $X \sim B(n, p)$, when $n \to \infty$ and $p \to 0$ in such a way that $\lambda = np$ remains
constant as $n \to \infty$, then $X$ will have a approximate Poisson distribution:
$$ \lim_{p \to 0, n \to \infty} Pr(X = x) = \frac{e^{-np}(np)^x}{x!} $$
Remark: If $p$ is close to 1, we interchange what we defined as success and failure to get a $p$ close to 0.
\subsection{4-81 Continuous Uniform Distribution}
When $X \sim Uniform(a, b)$, its p.d.f. graph will be a rectangle with base $a$ to $b$ inclusive and height $1/(b-a)$.
\textbf{Mean and variance}:
\begin{itemize}
\item $\mu = \frac{a+b}{2}$
\item $\sigma^2 = \frac{1}{12}(b-a)^2$
\end{itemize}
\subsection{4-90 Exponential Distribution}
P.D.F of $X$ having this distribution:
$$ f_X(x) = \alpha e^{-ax} \text{ for } x > 0 $$
Note: $\int_{-\infty}^{\infty} f(x)dx = 1$
\textbf{Mean and variance}:
\begin{itemize}
\item $\mu = \frac{1}{\alpha}$
\item $\sigma^2 = \frac{1}{\alpha^2}$
\end{itemize}
\textbf{No Memory Property}:
$$ Pr(X > s + t | X > s) = Pr(X > t) $$
Example: Probability a bulb lasts for \textbf{next} 1 month after using it for 12 months is the
same as that for it to last for the 1st 1 month as brand new.
\subsection{4-105 Normal Distribution}
$$ f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(x-\mu)^2}{2\sigma^2}), -\infty < x < \infty $$
\textbf{Properties}:
\begin{enumerate}
\item Its graph is bell-shaped and symmetrical about $x = \mu$
\item Maximum point occurs at $x = \mu$ with $f(x) = \frac{1}{\sqrt{2\pi}\sigma}$
\item The curve approaches the $x$ axis asymptotically when going to either direction
\item Total area under the curve is 1
\item Two curves with same $\sigma$ will have same shape (with different center if $\mu$ is different)
\item When $\sigma$ increases, the curve flattens (reverse: the curve sharpens)
\end{enumerate}
\textbf{Mean and variance}:
\begin{itemize}
\item $E(X) = \mu$
\item $V(X) = \sigma^2$
\end{itemize}
where $\mu$ and $\sigma^2$ are the parameters of the distribution.
\subsection{4-110 Std. Normal Distribution}
If $X$ has a normal distribution,
$$ Z = \frac{X-\mu}{\sigma} $$
has a \textbf{standardized normal distribution}, where $E(Z) = 0$ and $V(Z) = 1$.
\subsection{4-132 Normal Approx. to Binomial D.}
If $X \sim B(n,p)$, we have $\mu = np$ and $\sigma^2 = np(1-p)$. Then as $n \to \infty$,
$$ Z = \frac{X-np}{\sqrt{npq}} \text{ is approx. } \sim N(0, 1) $$
\subsection{4-136 Continuity Correction}
This applies to normal approx. to $B(n,p)$. Known, $0 \leq X \leq n$:
\begin{enumerate}
\item $Pr(X = k) \approx Pr(k - \frac{1}{2} < X < k + \frac{1}{2})$
\item \begin{itemize}
\item $Pr(a \leq X \leq b) \approx Pr(a - \frac{1}{2} < X < b + \frac{1}{2})$
\item $Pr(a < X \leq b) \approx Pr(a + \frac{1}{2} < X < b + \frac{1}{2})$
\item $Pr(a \leq X < b) \approx Pr(a - \frac{1}{2} < X < b - \frac{1}{2})$
\item $Pr(a < X < b) \approx Pr(a + \frac{1}{2} < X < b - \frac{1}{2})$
\end{itemize}
\item $Pr(X \leq c) = Pr(0 \leq X \leq c) \approx Pr(-\frac{1}{2} < X < c + \frac{1}{2})$
\item $Pr(X > c) = Pr(c < X \leq n) \approx Pr(c + \frac{1}{2} < X < n + \frac{1}{2})$
\end{enumerate}
\section{Sampling and Sampling Distributions}
\subsection{5-12 Sampling from a Finite Population}
From a population of size $N$, drawing $n$ samples. If no replacement, each sample has probability off
$\frac{1}{_NC_n}$ being chosen. If there is replacement, $\frac{1}{N^n}$.
\subsection{5-31 Sampling Distribution of $\bar{X}$}
For random samples of size $n$ from infinite population or finite one with replacement having population
mean $\mu$ and population standard deviation $\sigma$, sampling distribution of $\bar{X}$:
$$ \mu_{\bar{X}} = \mu_X \text{ and } \sigma_{\bar{X}^2} = \frac{\sigma_X^2}{n} $$
That is,
$$ E(\bar{X}) = E(X) \text{ and } V(\bar{X}) = \frac{V(X)}{n} $$
\textbf{Law of Large Number}:
When population have a finite $\sigma^2$, as the sample size increases, probability that sample mean differs
from population mean goes to 0.
\subsection{5-37 Central Limit Theorem}
The \textbf{sample distribution} of $\bar{X}$ is approximately normal with mean $\mu$ and variance $\sigma^2/n$
if $n$ is sufficiently large (say, $\geq 30$).
If $X$ is originally normally distributed, $\bar{X}$ is normally distributed regardless the size of $n$.
\subsection{5-52 Sampling Distribution of $\bar{X_1} - \bar{X_2}$}
If independent samples of sizes $n_1$ and $n_2$ (each $\geq 30$) are drawn from two populations, with means
$\mu_1, \mu_2$ and variances $\sigma^2_1, \sigma^2_2$,
$$ \bar{X_i} - \bar{X_2} \text{ approx. } \sim N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}) $$
\subsection{5-59 Chi-square Distribution}
If $Y$ is an RV and it has p.d.f.:
$$ f_Y(y) = \frac{1}{2^{n/2}\Gamma(n/2)} y^{n/2-1} e^{-y/2} \text{ , for } y > 0 $$
and 0 otherwise, $Y$ is defined to have a \textbf{Chi-square distribution with n degrees of freedom}, denoted by
$ Y \sim \chi^2(n)$. $n$ is a positive integer.
\textbf{Mean and variance}:
\begin{itemize}
\item $\mu = n$
\item $\sigma^2 = 2n$
\end{itemize}
\textbf{Summation}:
For independent $Y_1 \sim \chi^2(n_1), Y_2 \sim \chi^2(n_2), \dots$, $\sum_{i = 1}^k Y_i \sim \chi^2(\sum_{i = 1}^k n_i)$.
\subsection{5-62 Conversion to Chi-Square D.}
\begin{enumerate}
\item If $X \sim N(0,1)$, then $X^2 = \chi^2(1)$.
\item If $X \sim N(\mu, \sigma^2)$, then $[(X-\mu)/\sigma]^2 \sim \chi^2(1)$.
\item When there are $n$ random samples from a normal population, define
$$ Y = \sum_{i=1}^n \frac{(X_i - \mu)^2}{\sigma^2} $$
then $Y \sim \chi^2(n)$.
\end{enumerate}
\subsection{5-67 Sample Variance}
$$ S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 $$
\subsection{5-68 Sample Variance and Chi-sq.}
If $S^2$ is from samples from a \textbf{normal} population having variance $\sigma^2$, then
$$ \frac{(n-1)S^2}{\sigma^2} \sim \chi^2 (n-1) $$
\subsection{5-69 The T-distribution}
Suppose \textbf{independent} RVs $Z \sim N(0,1)$ and $U \sim \chi^2(n)$, and let
$$ T = \frac{Z}{\sqrt{U/n}} $$
then the RV $T$ follows \textbf{the t-distribution with $n$ degrees of freedom}. That is,
$$ T \sim t(n) $$
\textbf{Properties}:
\begin{enumerate}
\item The graph of t-distribution is symmetrical about $y$-axis, and is very close to that
of the standard normal distribution.
\item $\lim_{n \to \infty} f_T(t) = f_Z(t)$
\end{enumerate}
\textbf{Mean and variance}:
\begin{itemize}
\item $E(T) = 0$
\item $V(T) = n/(n-2)$ for $n > 2$
\end{itemize}
\subsection{5-80 The F-distribution}
Let $U \sim \chi^2(n_1)$ and $V \sim \chi^2(n_2)$, then
$$ F = \frac{U/n_1}{V/n_2} $$
is called a $F$ distribution with $(n_1,n_2)$ degrees of freedom.
\textbf{Mean and variance}:
\begin{itemize}
\item $E(X) = n_2/(n_2 - 2)$ with $n_2 > 2$
\item $V(X) = \frac{2n_2^2(n_1 + n_2 - 2)}{n_1(n_2-2)^2(n_2-4)}$ for $n_2 > 4$
\end{itemize}
Remark: If $F \sim F(n,m)$, then $1/F ~ F(m,n)$.
\section{Estimation Based on Normal Distribution}
\subsection{6-11 Interval Estimation of $\mu$}
Suppose $\sigma^2$ is known. Let
$$ \hat{\Theta}_L = \bar{X} - 2\frac{\sigma}{\sqrt{n}} \text{ and } \hat{\Theta}_U = \bar{X} + 2\frac{\sigma}{\sqrt{n}} $$
then we have an interval estimator of $\mu$:
$$ (\bar{X} - 2\frac{\sigma}{\sqrt{n}}, \bar{X} + 2\frac{\sigma}{\sqrt{n}}) $$
\subsection{6-12 Unbiased Estimator}
A statictic $\hat{\Theta}$ is said to be an \textbf{unbiased estimator} of the parameter $\theta$ if:
$$ E(\hat{\Theta}) = \theta $$
\textbf{Examples}:
$\bar{X}$ is an unbiased estimator of $\mu$ and $S^2$ is an unbiased estimator of $\sigma^2$.
\subsection{6-17 Interval Estimation}
We seek a random interval $(\hat{\Theta}_L, \hat{\Theta}_U)$ containing $\theta$ with a given probability
$1 - \alpha$. That is,
$$ Pr(\hat{\Theta}_L < \theta < \hat{\Theta}_U) = 1-\alpha $$
and this is called \textbf{a $(1-\alpha)100\%$ confidence interval} for $\theta$.
\subsection{6-22 Known Variance Case}
\label{6-22}
When population
\begin{enumerate}
\item has known variance and,
\item is normal or $n$ is sufficiently large (CLT)
\end{enumerate}
, we can have the interval given by
$$ (\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) $$
and the size of error can be given by
$$ Pr(\abs{\bar{X} - \mu} < z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) = 1 - \alpha $$
\subsection{6-27 Margin of Error}
\label{6-27}
Let $e$ denote the \textbf{margin of error}. We want:
$$ Pr(\abs{\bar{X} - \mu} \leq e) \geq 1 - \alpha $$
For a given margin of error $e$, the sample size is given by
$$ n \geq (z_{\alpha/2} \frac{\sigma}{e}) $$
\subsection{6-32 Unknown Variance Case}
\label{6-32}
It needs to satisfy:
\begin{enumerate}
\item unknown population variance
\item the population is \textbf{normal or very closed to normal}
\item the sample size is \textbf{small}
\end{enumerate}
, then we let
$$ T = \frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t_{n-1} $$
Hence,
$$ Pr(-t_{n-1;\alpha/2} < T < t_{n-1;\alpha/2}) = 1 - \alpha $$
Or:
$$ Pr(\bar{X} - t_{n-1;\alpha/2}\frac{S}{\sqrt{n}} < \mu < \bar{X} + t_{n-1;\alpha/2}\frac{S}{\sqrt{n}}) = 1 - \alpha $$
\subsection{6-36 Unknown Variance with Large $n$}
When $n$ is large, we simply replace $sigma$ with $S$ in the section~\nameref{6-22} above.
\subsection{6-43 CI for independent $\bar{X}_1 - \bar{X}_2$}
$X_1$ and $X_2$ have to be independent. We simply replace:
\begin{itemize}
\item $\bar{X}$ with $\bar{X}_1 - \bar{X}_2$
\item $\mu$ with $\mu_1 - \mu_2$
\item $\frac{\sigma}{\sqrt{n}}$ with $\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
\end{itemize}
in the section~\nameref{6-22} and~\nameref{6-27} above.
\subsection{6-56 Unknown but Equal Variance}
Conditions are the same as~\nameref{6-32} above. Let $\sigma_1 = \sigma_2 = \sigma$. Then, $\sigma^2$ can be
estimated by the pooled variance:
$$ S_p^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2} $$
Then, substituting $S_p^2$ for $\sigma^2$, we get this statistic:
$$ T = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2(\frac{1}{n_1} + \frac{1}{n_2})}} \sim t_{n_1+n_2-2} $$
Hence, let
$$ d = t_{n_1+n_2-2;\alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} $$
We have the confidence interval be:
$$ (\bar{X}_1 - \bar{X}_2) - d < \mu_1 - \mu_2 < (\bar{X}_1 - \bar{X}_2) + d $$
\subsection{6-64 Unknown but Equal Variance with Large $n$}
Replace $t_{n_1+n_2-2;\alpha/2}$ by $z_{\alpha/2}$ in the above formula.
\subsection{6-70 CI for paired data}
Observations in two samples made from the \textbf{same individual} are related and hence form a pair.
Consider $d_i = x_i - y_i$ of paired observations. We assume $d$ is normal and we then have:
$$ \bar{d} = \frac{1}{n}\sum_{i=1}^n d_i $$
and point estimate of $\sigma_D^2$:
$$ S_D^2 = \frac{1}{n-1}\sum_{i=1}^n (d_i - \bar{d})^2 $$
Hence we have the CI for $d$:
$$ \bar{d} - t_{n-1;\alpha/2}(\frac{S_D}{\sqrt{n}}) < \mu_D < \bar{d} + t_{n-1;\alpha/2}(\frac{S_D}{\sqrt{n}}) $$
\subsection{6-73 CI for paired data with large $n$}
For \textbf{sufficiently large} sample, we can replace $t_{n-1;\alpha/2}$ by $z_{\alpha/2}$ above.
\subsection{6-78 CI for variances}
Consider $X_1, X_2, \dots, X_n$ from (approximate) $N(\mu, \sigma^2)$ distribution. Then a point estimator of $\sigma^2$:
$$ S^2 = \frac{1}{n-1}\sum_{i=1}^{n}(X_i-\bar{X})^2 = \frac{1}{n-1}(\sum_{i=1}^{n}X_i^2-n\bar{X}^2) $$
We have CI when $\mu$ is known:
$$ \frac{\sum_{i=1}^n(X_i-\mu)^2}{\chi^2_{n;\alpha/2}} < \sigma^2 < \frac{\sum_{i=1}^n(X_i-\mu)^2}{\chi^2_{n;1-\alpha/2}} $$
When $\mu$ is unknown:
$$ \frac{(n-1)S^2}{\chi^2_{n-1;\alpha/2}} < \sigma^2 < \frac{(n-1)S^2}{\chi^2_{n-1;1-\alpha/2}} $$
Remark: When we want to find CI for $\sigma$, we just square root both sides in the above inequalities.
\subsection{6-90 CI for Ratio of Two Variances}
Consider samples $X_1, X_2, \dots, X_{n_1}$ from a $N(\mu_1, \sigma_1^2)$ population, and
samples $Y_1, Y_2, \dots, Y_{n_2}$ from a $N(\mu_2, \sigma_2^2)$ population, and $\mu_1, \mu_2$ are \textbf{unknown}.
Then we have the CI:
$$ \frac{S_1^2}{S_2^2}\frac{1}{F_{n_1-1,n_2-1;\alpha/2}} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{S_1^2}{S_2^2}F_{n_2-1,n_1-1;\alpha/2} $$
\end{multicols}
\end{document}