-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_feature_and_knn_score.py
437 lines (384 loc) · 15.2 KB
/
extract_feature_and_knn_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
"""
To save outputs (features or OOD scores) output by a classifier.
"""
import os
import glob
import sys
import numpy as np
import pickle
from tqdm import tqdm
import time
import copy
import gc
import shutil
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models.feature_extraction import create_feature_extractor
import faiss
from utils.io_utils import save_pickle, load_pickle
from utils.get_models import FeatureExtractor
from density_aware_calib import KNNScorer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Visible devices num: ", torch.cuda.device_count())
def extract_features_and_save_ood_scores(
args,
split,
loader,
feature_extractor,
to_save_features=False,
ood_scorer=None,
save_batch_interval=50,
):
"""
1. For training data, ood_scorer should be None, to_save_features should be True.
Then, extracted features and labels are saved.
2. For test data, ood_scorer should be given, to_save_features should be False.
Then, extracted features are not saved, but the OOD scores are saved.
Inputs:
args:
arguments
split:
"train" or "test" or other data name
loader:
data loader
feature_extractor:
the classifier we want to calibrate. (create_feature_extractor())
save_batch_interval:
In order to save memory, we save the outputs in batches.
Decrease this number if memory error occurs.
"""
print("Split: ", split)
# save them
save_d = os.path.join(args.save_outputs_dir, split)
save_outputs_d = os.path.join(save_d, "outputs")
save_labels_d = os.path.join(save_d, "labels")
save_features_d = os.path.join(save_d, "features")
os.makedirs(save_d, exist_ok=True)
os.makedirs(save_outputs_d, exist_ok=True)
os.makedirs(save_labels_d, exist_ok=True)
if to_save_features:
os.makedirs(save_features_d, exist_ok=True)
if not args.force_save:
if os.path.exists(os.path.join(save_d, f"outputs.pickle")):
print(f"Already extracted features: ", split)
return
# eval mode
feature_extractor.eval()
##############################
# get features
batch_sum = len(loader)
print("total batch size:", batch_sum)
save_idx = 0
data = {
"features": {},
"outputs": [],
"labels": [],
}
ood_score_dict = {}
with torch.no_grad():
for batch_idx, (inputs, labels) in tqdm(enumerate(loader)):
inputs, labels = inputs.to(device), labels.to(torch.long)
# get outputs
features_dict = feature_extractor(inputs)
for k, feat in features_dict.items():
feat = feat.detach().cpu().numpy()
data["features"].setdefault(k, []).append(feat)
assert len(feat.shape) == 2, feat.shape
if batch_idx == 0:
print(k, feat.shape)
outputs = features_dict[list(features_dict.keys())[-1]].detach().cpu().numpy()
labels = labels.detach().cpu().numpy()
data["outputs"].append(outputs)
data["labels"].append(labels)
del inputs, outputs, labels, feat
gc.collect()
to_end = batch_sum * args.train_data_ratio < batch_idx if split == "train" else False
if (
(len(data["outputs"]) >= save_batch_interval)
or (batch_sum == batch_idx + 1)
or to_end
):
# concat numpy array
data["outputs"] = np.concatenate(data["outputs"], 0)
data["labels"] = np.concatenate(data["labels"], 0)
for k in data["features"]:
data["features"][k] = np.concatenate(data["features"][k], 0)
# calc OOD score
if ood_scorer is not None:
test_feats = [data["features"][k] for k in data["features"]]
ood_scores = ood_scorer.get_score(test_feats)
for i, k in enumerate(data["features"]):
ood_score_dict.setdefault(k, []).append(ood_scores[i])
# save them
p = os.path.join(save_outputs_d, f"batch{save_idx}.pickle")
save_pickle(p, data["outputs"])
p = os.path.join(save_labels_d, f"batch{save_idx}.pickle")
save_pickle(p, data["labels"])
if to_save_features:
for k in data["features"]:
this_d = os.path.join(save_features_d, k)
os.makedirs(this_d, exist_ok=True)
p = os.path.join(this_d, f"batch{save_idx}.pickle")
save_pickle(p, data["features"][k])
# reset
del data
gc.collect()
data = {
"features": {},
"outputs": [],
"labels": [],
}
print(f"batch: {batch_idx}, save_idx: {save_idx}")
save_idx += 1
if to_end:
print(f"End at data ratio={args.train_data_ratio}. batch_idx={batch_idx}")
break
# combine saved files
combine_batch_data(args, split)
if ood_scorer is not None:
ood_score_dict = {k: np.concatenate(v, 0) for k, v in ood_score_dict.items()}
save_ood_values(args, split, ood_score_dict)
def combine_batch_data(args, split):
"""
Combine saved batch data into one file.
"""
print("Split: ", split)
# save them
save_d = os.path.join(args.save_outputs_dir, split)
os.makedirs(save_d, exist_ok=True)
save_outputs_d = os.path.join(save_d, "outputs")
save_labels_d = os.path.join(save_d, "labels")
save_features_d = os.path.join(save_d, "features")
if not args.force_save and os.path.exists(os.path.join(save_d, "outputs.pickle")):
print("outputs.pickle already exist.")
else:
outputs = []
i = 0
while True:
if not os.path.exists(os.path.join(save_outputs_d, f"batch{i}.pickle")):
break
this_outputs = load_pickle(os.path.join(save_outputs_d, f"batch{i}.pickle"))
outputs.append(this_outputs)
i += 1
outputs = np.concatenate(outputs, 0)
save_pickle(os.path.join(save_d, "outputs.pickle"), outputs)
del outputs, this_outputs
gc.collect()
shutil.rmtree(save_outputs_d, ignore_errors=True)
if not args.force_save and os.path.exists(os.path.join(save_d, "labels.pickle")):
print("labels.pickle already exist.")
else:
labels = []
i = 0
while True:
if not os.path.exists(os.path.join(save_labels_d, f"batch{i}.pickle")):
break
this_labels = load_pickle(os.path.join(save_labels_d, f"batch{i}.pickle"))
labels.append(this_labels)
i += 1
labels = np.concatenate(labels, 0)
save_pickle(os.path.join(save_d, "labels.pickle"), labels)
del labels, this_labels
gc.collect()
shutil.rmtree(save_labels_d, ignore_errors=True)
outputs = load_pickle(os.path.join(save_d, "outputs.pickle"))
labels = load_pickle(os.path.join(save_d, "labels.pickle"))
if len(labels.shape) == 2:
labels = np.argmax(labels, 1)
correct = np.argmax(outputs, 1) == labels
acc = np.array(correct).mean()
print(f"Acc ({split}): ", acc)
if split in ["train", "val", "test"] and acc < 0.50:
print("Something wrong with accuracy!")
print(outputs)
print(np.argmax(outputs, 1))
print(labels)
exit()
if not args.force_save and ((not args.save_only_ood_scores) or (split == "train")):
feat_list = glob.glob(os.path.join(save_features_d, "*"))
feat_list = [f.split("/")[-1].replace(".pickle", "") for f in feat_list]
for k in feat_list:
this_save_feats_d = os.path.join(save_features_d, k)
this_feat_save_path = os.path.join(save_features_d, f"{k}.pickle")
if os.path.exists(this_feat_save_path):
print(f"{this_feat_save_path} already exist.")
else:
feats = []
i = 0
while True:
this_path = os.path.join(this_save_feats_d, f"batch{i}.pickle")
if not os.path.exists(this_path):
break
this_feats = load_pickle(this_path)
feats.append(this_feats)
i += 1
feats = np.concatenate(feats, 0)
save_pickle(this_feat_save_path, feats)
del feats, this_feats
gc.collect()
shutil.rmtree(this_save_feats_d, ignore_errors=True)
def save_ood_values(args, split, data):
name = "ood_score"
if args.save_dist_arr:
name = "ood_score_arr"
save_d = os.path.join(args.save_outputs_dir, split, name)
os.makedirs(save_d, exist_ok=True)
for k in data:
p = os.path.join(save_d, f"{k}.pickle")
save_pickle(p, data[k])
print(f"Saved {k} to {p}: {data[k].shape}")
print("Saved ood values: ", save_d)
def str2bool(s):
if s.lower() in ["t", "true"]:
return True
elif s.lower() in ["f", "false"]:
return False
else:
raise ValueError
if __name__ == "__main__":
import sys
import argparse
from utils.dataset import get_loaders
from constants.layer_names import get_layers_name
from constants.dac_hyperparams import hyperparams
from utils.get_models import get_model
parser = argparse.ArgumentParser(description="")
# dataset
parser.add_argument("--data_root", type=str, default="../")
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--dataset", type=str, default="cifar10")
# model
parser.add_argument("--model_name", type=str, default="resnet18")
parser.add_argument("--model_path", type=str, default="")
# save args
parser.add_argument("--force_save", type=str2bool, default=False)
parser.add_argument("--save_outputs_root_dir", type=str, default="outputs")
parser.add_argument("--top_k", type=int, default=50)
parser.add_argument("--is_all_layers", type=str2bool, default=False)
parser.add_argument("--save_only_ood_scores", type=str2bool, default=True)
parser.add_argument("--save_dist_arr", type=str2bool, default=False)
parser.add_argument("--train_data_ratio", type=float, default=1.0)
parser.add_argument("--save_batch_interval", type=int, default=100)
parser.add_argument(
"--test_data_type", type=str, nargs="*",
default=[],
choices=[
"natural",
"gaussian_noise",
"shot_noise",
"speckle_noise",
"impulse_noise",
"defocus_blur",
"gaussian_blur",
"motion_blur",
"zoom_blur",
"snow",
"fog",
"brightness",
"contrast",
"elastic_transform",
"pixelate",
"jpeg_compression",
"spatter",
"saturate",
"frost",
]
)
args = parser.parse_args()
# load DAC hyperparams
args.num_classes = hyperparams[args.dataset]["num_classes"]
args.top_k = hyperparams[args.dataset]["knn_k"]
args.train_data_ratio = hyperparams[args.dataset]["train_data_ratio"]
print("\n===============")
print("Dataset: ", args.dataset)
print("Model: ", args.model_name)
print("Top k for KNN score: ", args.top_k)
print("Ratio of train set to use: ", args.train_data_ratio)
print("===============\n")
###### Get dataloader ########
train_loader, val_loader, test_loader = get_loaders(
name=args.dataset,
data_root=args.data_root,
batch_size=args.batch_size,
train_no_aug=True, # important
)
root_dir = args.save_outputs_root_dir
args.save_outputs_dir = os.path.join(root_dir, f"{args.dataset}/{args.model_name}")
os.makedirs(args.save_outputs_dir, exist_ok=True)
###### load classifier ########
model = get_model(args.model_name, args.num_classes)
model.load_state_dict(torch.load(args.model_path)["state_dict"])
model.to(device)
print("loaded model weights: ", args.model_path)
###### Feature Extractor ########
if args.is_all_layers:
return_nodes = get_layers_name(
args.model_name, model=model, get_all=True, add_logits=True
)
feature_extractor = FeatureExtractor(model, return_nodes)
else:
return_nodes = get_layers_name(args.model_name, model=model, add_logits=True)
feature_extractor = FeatureExtractor(model, return_nodes)
layers_name = [v for k, v in return_nodes.items()] if isinstance(return_nodes, dict) else return_nodes
if torch.cuda.device_count() >= 2:
feature_extractor = torch.nn.DataParallel(feature_extractor).cuda()
###### Extract features and save KNN scores ########
# for train set
start_time = time.time()
split = "train"
extract_features_and_save_ood_scores(
args,
split,
train_loader,
feature_extractor,
to_save_features=True, # need to save features for train set
ood_scorer=None,
save_batch_interval=args.save_batch_interval,
)
end_time = time.time()
print(f"- Train feature extraction: {end_time - start_time} seconds")
# set ood_scorer
train_save_d = os.path.join(args.save_outputs_dir, "train")
train_labels = load_pickle(os.path.join(train_save_d, "labels.pickle"))
ood_scorer = KNNScorer(top_k=args.top_k, return_dist_arr=args.save_dist_arr, gpu=True)
for layer in layers_name:
path = os.path.join(train_save_d, "features", f"{layer}.pickle")
train_feat = load_pickle(path)
print("Set train features to ood_scorer: {}, {}".format(layer, train_feat.shape))
ood_scorer.set_train_feat(train_feat, train_labels, args.num_classes)
# for val, test set
for split, loader in zip(["val", "test"], [val_loader, test_loader]):
print("Save OOD scores: ", split)
ood_score_dict = extract_features_and_save_ood_scores(
args,
split,
loader,
feature_extractor,
to_save_features=False,
ood_scorer=ood_scorer,
save_batch_interval=args.save_batch_interval,
)
# for corruption data
assert args.dataset in ["cifar10", "cifar100", "imagenet"]
test_corruptions = args.test_data_type
severities = [1, 2, 3, 4, 5]
for ci, cname in enumerate(test_corruptions):
for severity in severities:
cname_s = f"{cname}_{severity}"
print("Save OOD scores: ", cname_s)
loader = get_loaders(
f"{args.dataset}c",
cname=cname,
batch_size=args.batch_size,
severity=severity,
)
ood_score_dict = extract_features_and_save_ood_scores(
args,
cname_s,
loader,
feature_extractor,
to_save_features=False,
ood_scorer=ood_scorer,
save_batch_interval=args.save_batch_interval,
)