-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
150 lines (112 loc) · 4.55 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from ast import literal_eval as make_tuple
import argparse
import gan
import gym
import numpy as np
import os
from tqdm import tqdm
from gan import check_dirs
exp = ['CartPole-v0', 'Pendulum-v0', 'MountainCar-v0', 'SpaceInvaders-v0']
def main(args):
data = read(args.data)
env = gym.make(args.env)
create_set_state_method(env.__class__)
gen = gan.Generator(data, args.noise_dim)
samples = gen.generate(1000)
# print sample
env.reset()
total_error = dataset_error(env, samples)
print('Avg Error:', list(total_error))
# print(samples[0])
random_samples = np.random.uniform(-1, 1, size=samples.shape)
random_total_error = dataset_error(env, random_samples)
print('Avg Random Error:', list(random_total_error))
# print(random_samples[0])
def create_set_state_method(cls):
def set_state(self, state):
self.reset()
if self.state.shape == state.shape:
self.state = state
else:
cls.logger.error('Parameter state does not have same dimensions as this environment state.')
cls.set_state = set_state
def dataset_error(env, data):
total_error = 0
for sample in data:
sample = round_actions(sample)
total_error += sample_norm_MSE(env, sample)
return total_error / len(data)
def round_actions(sample):
sample[:, -1] = np.round(1 / (1 + np.exp(sample[:, -1])))
return sample
def sample_error(env, sample):
initial_state = sample[0, :-1]
total_error = np.zeros(initial_state.shape)
action = int(sample[0, -1])
env.set_state(initial_state)
# print(env.state, '=====', initial_state)
for step in sample[1:]:
env.step(action)
state = step[:-1]
# print(env.state, '\n', state, '\n\n')
step_error = state_error(env.state, state)
total_error += step_error
action = int(step[-1])
return total_error
def sample_norm_MSE(env, sample):
total_error = sample_error(env, sample)
state_range = np.max(sample[:, :-1], axis=0) - np.min(sample[:, :-1], axis=0)
return total_error / state_range
def state_error(true_state, pred_state):
return np.abs(true_state - pred_state)
def format_dataset_name(env_name, shape):
return '{}_{}_dataset.csv'.format(env_name, shape)
def record(nb_samples, nb_steps, env_name, extend_steps=False, nb_max_steps=200):
# Check for directories
check_dirs('datasets')
dataset_filename = 'datasets/' + format_dataset_name(env_name, (nb_samples, nb_steps))
if os.path.isfile(dataset_filename):
# TODO idk lol
pass
env = gym.make(env_name)
state_dim = len(env.reset()) + 1
if extend_steps:
nb_max_steps = int(nb_max_steps / nb_steps) * nb_steps
nb_traj_samples = int(np.ceil(float(nb_samples) * nb_steps / nb_max_steps))
data = get_data(env, nb_traj_samples, nb_max_steps, state_dim)
data = data.flatten()[:nb_samples * nb_steps * state_dim]
data = data.reshape((nb_samples, nb_steps, state_dim))
else:
data = get_data(env, nb_samples, nb_steps, state_dim)
np.savetxt('datasets/dataset.csv', data.flatten(), delimiter=',', header=str(data.shape))
np.savetxt(dataset_filename, data.flatten(), delimiter=',', header=str(data.shape))
def get_data(env, nb_samples, nb_steps, state_dim):
data = np.array([]).reshape(0, nb_steps, state_dim)
for _ in tqdm(range(nb_samples)):
sample = np.array([]).reshape(0, state_dim)
step = env.reset()
for _ in range(nb_steps):
action = env.action_space.sample()
step = np.append(step, action)
sample = np.vstack((sample, step))
step = env.step(action)[0]
data = np.vstack((data, sample.reshape(1, nb_steps, state_dim)))
return data
def read(filename):
data = np.genfromtxt(filename, dtype='float', delimiter=',', skip_header=1)
with open(filename, 'r') as data_file:
header = data_file.readline()
return data.reshape(make_tuple(header[2:]))
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--env', type=str, default='CartPole-v0')
parser.add_argument('--batch_size', type=int)
parser.add_argument('--data', type=str, default='datasets/dataset.csv')
parser.add_argument('--nb_samples', type=int, default=10000)
parser.add_argument('--nb_steps', type=int, default=6)
parser.add_argument('--noise_dim', type=int, default=10)
return parser.parse_args()
if __name__ == '__main__':
args = get_args()
main(args)
# record(args.nb_samples, args.nb_steps, args.env, extend_steps=True)