-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsim.R
104 lines (78 loc) · 2.82 KB
/
sim.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
################################################################################
# Updated version of the R code for an example of the analysis in:
#
# "Investigating uncertainty in the minimum temperature mortality:
# methods and application to 52 Spanish cities"
# Armstrong B, Tobias A, Gasparrini A
# http://www.ag-myresearch.com/2017_tobias_epidem.html
#
# Update: 15 January 2017
# * an updated version of this code, compatible with future versions of the
# software, is available at:
# https://github.com/gasparrini/2017_tobias_Epidem_Rcodedata
################################################################################
################################################################################
# SIMULATION STUDY ON THE FUNCTION findmin()
################################################################################
library(dlnm) ; library(splines)
source("findmin.R")
################################################################################
# DEFINE A KNOWN EXPOSURE-RESPONSE ASSOCIATION
# LOAD A SUBSET OF THE DATA: LONDON JULY-DEC 2005
# (CONVENIENCE SAMPLE, LARGISH ASIMMETRIC CI)
data <- subset(read.csv("london.csv"), year==2005 & month>6)
head(data)
# A UNIDIMENSIONAL 4DF SPLINE
b <- onebasis(data$tmean,df=4)
# SIMPLE MODEL, WITH PREDICTED OUTCOME
m <- glm(death~b,family=poisson,data)
deathpred <- predict(m,type="response")
# REAL MINIMUM
(min <- findmin(b,m))
################################################################################
# RUN SIMULATION
# NUMBER OF SIMULATIONS
nsim <- 100
# GRID
summary(data$tmean)
at <- seq(0,24.3,by=0.1)
# CREATE THE OBJECT TO STORE THE INFO
res <- matrix(NA,nsim,6,dimnames=list(seq(nsim),
c("est_min","bias","covered","true_at_CI_edge","boundary","est_SE")))
# RUN THE LOOP
set.seed(13041975)
for(i in seq(nsim)) {
cat(i,"")
# GENERATE SIMULATED DATA
deathsim <- rpois(length(deathpred),deathpred)
# FIT THE MODEL
msim <- glm(deathsim~b,family=poisson,data)
# FIND MIN, SAMPLE OF BOOTSTRAP ESTIMATES, AND CI AND SE FROM THOSE
minsim <- findmin(b,msim,at=at)
minsimbs <- findmin(b,msim,,at=at,sim=T)
mincisim <- quantile(minsimbs,c(2.5,97.5)/100)
minsesim <- sd(minsimbs)
# STORE THE DATA
res[i,1] <- minsim
res[i,2] <- min-minsim
res[i,3] <- mincisim[1]<=min & mincisim[2]>=min
res[i,4] <- mincisim[1]==min | mincisim[2]==min
res[i,5] <- any(mincisim == range(at))
res[i,6] <- minsesim
}
################################################################################
# ASSESS RESULTS
# BIAS
mean(res[,2])
# COVERAGE
mean(res[,3])*100
# % OF CIS WITH TRUE MIN AT EDGE (DISCRETE SPACE ISSUE)
mean(res[,4])*100
# PERCENTAGE OF CI AT BOUNDARY OF X SPACE
mean(res[,5])*100
# TRUE SAMPLING SD OF ESTIMATED MINIMA (EMPIRICAL SE)
# AND DISTRIBUTION OF ESTIMATED SES
sd(res[,1])
summary(res[,6])
mean(res[,6])
#