-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2_FirstStage.R
75 lines (56 loc) · 1.87 KB
/
2_FirstStage.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#####################################################################
#
# MCC HetPoll
# Part 1: First stage, city level
#
#####################################################################
library(dlnm)
library(splines)
load("Data/0_Data.RData")
#-------------------------------------
# Set up empty objects to save results
#-------------------------------------
# Coefficients
coefall <- matrix(NA, nrow(cities), 1, dimnames = list(cities$city))
redall <- list()
# Vcov matrices
vcovall <- vector("list", nrow(cities))
# Convergence indicator
conv <- rep(NA, nrow(cities))
names(vcovall) <- names(conv) <- cities$city
#-------------------------------------
# Model parameters
#-------------------------------------
maxlagp <- 1
arglagp <- list(fun = "strata") # Equivalent to MA
argvarp <- list(fun = "lin")
cen <- 0
timedf <- 7
#-------------------------------------
# Loop on cities
#-------------------------------------
for(i in seq(length(dlist))) {
cat(i,"")
citydat <- dlist[[i]]
# Construct crossbasis for temperature confounding
cbt <- crossbasis(citydat$tmean, lag = 3,
arglag = list(fun = "strata"),
argvar = list(fun = "bs",
knots = quantile(citydat$tmean, c(.1, .75, .9), na.rm = T))
)
# Construct crossbasis for PM2.5
cbp <- crossbasis(citydat$pm25, lag = maxlagp,
argvar = argvarp, arglag = arglagp)
# Estimate the model
model <- glm(death ~ cbp + cbt + dow +
ns(date, df = round(timedf * length(date) / 365.25)),
data = citydat, family = quasipoisson, na.action = "na.exclude")
# Succesful estimation?
conv[i] <- model$converged
# Store results for 2nd stage meta-analysis
redall[[i]] <- crosspred(cbp, model, cen = cen, at = 10) # Overall
coefall[i,] <- redall[[i]]$allfit
vcovall[[i]] <- redall[[i]]$allse^2
}
# Save results
save.image("Data/2_FirstStageResults.RData")