-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtpm.py
executable file
·145 lines (112 loc) · 5.22 KB
/
tpm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#!/usr/bin/env python3
import warnings
import argparse
import numpy as np
import pandas as pd
import seaborn as sns
from pathlib import Path
import matplotlib.pyplot as plt
from common import remap, constrain, transitions
pd.options.mode.chained_assignment = None # supress SettingWithCopyWarning - False positive when using remap
#warnings.filterwarnings(action='ignore') # ignore all warnings. Use at own risk
def census_map(data, var_name, wave):
""" map survey data to census"""
datadir = Path("data/UKDA-6614-tab/tab/ukhls_w%d" % wave)
waveletter = chr(96+wave) # 1 -> "a" etc
var_map = {
'_hhtype_dv' : {
1: 0, 2: 0, 3: 0, # single occ
4: 3, 5: 3, # single parent
6: 1, 8: 1, 10: 1, 11: 1, 12: 1, 19: 1, 20: 1, 21: 1, # couples
16: 4, 17:4, 18: 4, 22: 4, 23: 4 # mixed
},
'_tenure_dv' : { 1: 0, # 2 (owned) in census
2: 1, # 3 (mortgaged) in census
3: 2, 4: 2, # 5 (rented social) in census
5: 3, 6: 3, 7: 3 # 6 (rented private) in census
}
}
var_con = {
'_hsrooms': [1,6],
'_hsbeds': [1,4],
'_hhsize': [1,4]
}
if var_name in var_map.keys():
data = remap(data, waveletter+var_name, var_map[var_name])
if var_name == '_hhtype_dv':
# check whether couples are married or cohabiting
marital_data = pd.read_csv(datadir / (waveletter + '_indall.tab'), sep = '\t')
marital_data = marital_data[['pidp', waveletter+'_mastat_dv']]
couples = data.loc[data[waveletter+'_hhtype_dv'] == 1, [waveletter+'_hhtype_dv', waveletter+'_hidp', waveletter+'_hrpid']]
couples = couples.merge(marital_data, how='left', left_on=waveletter+'_hrpid', right_on='pidp').set_index(couples.index)
to_change = couples.index[couples[waveletter+'_mastat_dv']==10.0].to_list()
data.loc[to_change, waveletter+'_hhtype_dv'] = 2
if var_name in var_con.keys():
if var_name == '_hsbeds': # Census automatically turns 0 beds into 1
data[waveletter+'_hsbeds'] = np.maximum(data[waveletter+'_hsbeds'], 1)
if var_name == '_hsrooms': # Rooms excl. bedrooms -> to rooms incl. beds, i.e. total
data[waveletter+'_hsrooms'] = data[waveletter+'_hsrooms'] + data[waveletter+'_hsbeds']
data = constrain(data, waveletter+var_name, var_con[var_name][0], var_con[var_name][1], shift=-1)
return data
def main ():
if args.var_name.startswith("_"): # variable to extract
var_name = args.var_name
else: # catch variables without underscore
var_name = '_'+args.var_name
print("\nvariable: %s" % var_name)
if args.r:
print("remap selected")
# household response data - only keep required variables (files are too big to store in memory)
print("Loading household data...\n")
var_dict = {}
states = []
for wave in range(1,8):
waveletter = chr(96+wave) # 1 -> "a" etc
datadir = Path("data/UKDA-6614-tab/tab/ukhls_w%d" % wave)
#datadir = Path("data/")
data = pd.read_csv(datadir / (waveletter+'_hhresp.tab'), sep ='\t')
if var_name != '_hsrooms':
data = data[[waveletter+'_hrpid', waveletter+var_name]]
else:
data = data[[waveletter+'_hrpid', waveletter+var_name, waveletter+'_hsbeds']]
# mapping to census category values
if args.r:
data = census_map(data, var_name, wave)
# Drop any missing values
data=data.loc[data[waveletter+var_name]>=0]
var_dict[wave] = data.set_index(waveletter+'_hrpid')
# Possible states to cycle through
s = var_dict[wave][waveletter+var_name].unique()
states.extend(s)
states = set(states)
# transitions from wave w to wave w+1
print("Calculating average transition probabilities...")
tpm = pd.DataFrame()
for in_state in states:
t_ave = transitions(var_name, in_state, var_dict)[1].rename(in_state)
tpm = pd.concat([tpm, t_ave], axis=1)
tpm = tpm.fillna(value=0) # display missing transitions as zero percentage
tpm.index.name = 'final state'
tpm.columns.name = 'initial state'
assert np.allclose(np.sum(tpm), 100.0)
tpm = tpm.T # Transpose matrix
print(tpm.round(2))
# plot probabilities
ax = sns.heatmap(tpm.round(2), linewidth=.5, cmap="GnBu", annot=True, cbar_kws={'label':'Percentage (%)'})
ax.set_title('Average Transition Probabilities - %s' % var_name[1:])
plt.show()
# export table to csv
if args.s:
out_dir = "data/w"+var_name+"-tpm.csv"
tpm.to_csv(out_dir)
print("\n Table saved to '%s'." % out_dir)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("var_name", type=str, nargs='?', default='_hhtype_dv',
help="variable of interest to extract. must be in hhresp.tab. type without wave prefix 'w', e.g. _hhtype_dv")
parser.add_argument("-s", action='store_true',
help= "save output to csv")
parser.add_argument("-r", action='store_true',
help= "remap variable to census definitions" )
args = parser.parse_args()
main()