Skip to content

Commit

Permalink
Merge pull request #421 from kritikaparmar-programmer/rnn
Browse files Browse the repository at this point in the history
RNN
  • Loading branch information
geekquad authored Dec 19, 2020
2 parents 733f3ef + 241333f commit 9ec84ee
Show file tree
Hide file tree
Showing 4 changed files with 531 additions and 0 deletions.
247 changes: 247 additions & 0 deletions dl/RNN/.ipynb_checkpoints/RNN-checkpoint.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,247 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "zwzjFi8-CR4a"
},
"outputs": [],
"source": [
"import tensorflow as tf\r\n",
"from tensorflow.keras.models import Sequential\r\n",
"from tensorflow.keras.layers import Dense, Dropout, LSTM"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "yGzOxAAjCVld",
"outputId": "6a0e52cc-7071-4a64-ea60-a2801097915d"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz\n",
"11493376/11490434 [==============================] - 0s 0us/step\n"
]
}
],
"source": [
"mnist = tf.keras.datasets.mnist\r\n",
"(x_train, y_train), (x_test, y_test) = mnist.load_data()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "GjR_FRu3CYFa",
"outputId": "2ecd447c-79e0-44c4-93d3-0f52fad26eec"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(60000, 28, 28)\n"
]
}
],
"source": [
"print(x_train.shape)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "dW_UOayCCYy3"
},
"outputs": [],
"source": [
"# normalise data\r\n",
"x_train = x_train/255.0\r\n",
"x_test = x_test/255.0"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"id": "Ev3eg2PcCYps"
},
"outputs": [],
"source": [
"model = Sequential()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"id": "W7OnTS_UCYem"
},
"outputs": [],
"source": [
"model.add(LSTM(128, input_shape = (28, 28), activation='relu', return_sequences=True))\r\n",
"model.add(Dropout(0.2))\r\n",
"\r\n",
"model.add(LSTM(128, activation='relu'))\r\n",
"model.add(Dropout(0.2))\r\n",
"\r\n",
"model.add(Dense(32, activation='relu'))\r\n",
"model.add(Dropout(0.2))\r\n",
"\r\n",
"model.add(Dense(10, activation='softmax'))"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "-y_DlifKEVUu",
"outputId": "3bfb3e71-d4d8-4267-8d20-ce10c3b173d0"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: \"sequential\"\n",
"_________________________________________________________________\n",
"Layer (type) Output Shape Param # \n",
"=================================================================\n",
"lstm (LSTM) (None, 28, 128) 80384 \n",
"_________________________________________________________________\n",
"dropout (Dropout) (None, 28, 128) 0 \n",
"_________________________________________________________________\n",
"lstm_1 (LSTM) (None, 128) 131584 \n",
"_________________________________________________________________\n",
"dropout_1 (Dropout) (None, 128) 0 \n",
"_________________________________________________________________\n",
"dense (Dense) (None, 32) 4128 \n",
"_________________________________________________________________\n",
"dropout_2 (Dropout) (None, 32) 0 \n",
"_________________________________________________________________\n",
"dense_1 (Dense) (None, 10) 330 \n",
"=================================================================\n",
"Total params: 216,426\n",
"Trainable params: 216,426\n",
"Non-trainable params: 0\n",
"_________________________________________________________________\n"
]
}
],
"source": [
"model.summary()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"id": "6O9qZ5WRCl2d"
},
"outputs": [],
"source": [
"optimizer = tf.keras.optimizers.Adam(lr=0.001, decay=0.00005)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"id": "BMz_PlqqCn3Q"
},
"outputs": [],
"source": [
"model.compile(loss='sparse_categorical_crossentropy', \r\n",
" optimizer=optimizer,\r\n",
" metrics=['accuracy'])"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ZGyzfMlYCq5e",
"outputId": "e755ae08-d56b-4fac-8abd-ae991363409d"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/5\n",
"1875/1875 [==============================] - 101s 54ms/step - loss: 0.2994 - accuracy: 0.9152 - val_loss: 0.1330 - val_accuracy: 0.9612\n",
"Epoch 2/5\n",
"1875/1875 [==============================] - 99s 53ms/step - loss: 0.1400 - accuracy: 0.9634 - val_loss: 0.0844 - val_accuracy: 0.9764\n",
"Epoch 3/5\n",
"1875/1875 [==============================] - 102s 54ms/step - loss: 0.0969 - accuracy: 0.9743 - val_loss: 0.0621 - val_accuracy: 0.9812\n",
"Epoch 4/5\n",
"1875/1875 [==============================] - 100s 53ms/step - loss: 0.0791 - accuracy: 0.9793 - val_loss: 0.0698 - val_accuracy: 0.9811\n",
"Epoch 5/5\n",
"1875/1875 [==============================] - 99s 53ms/step - loss: 0.0643 - accuracy: 0.9830 - val_loss: 0.0502 - val_accuracy: 0.9850\n"
]
},
{
"data": {
"text/plain": [
"<tensorflow.python.keras.callbacks.History at 0x7f40fc0f4e80>"
]
},
"execution_count": 10,
"metadata": {
"tags": []
},
"output_type": "execute_result"
}
],
"source": [
"model.fit(x_train, y_train, epochs=5, \r\n",
" validation_data=(x_test, y_test))"
]
}
],
"metadata": {
"colab": {
"name": "RNN.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Loading

0 comments on commit 9ec84ee

Please sign in to comment.