Skip to content

feat(ai): Add preliminary AI analytics page content #69010

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Apr 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 1 addition & 5 deletions static/app/routes.tsx
Original file line number Diff line number Diff line change
Expand Up @@ -1491,11 +1491,7 @@ function buildRoutes() {
);

const aiAnalyticsRoutes = (
<Route
path="/ai-analytics/"
component={make(() => import('sentry/views/aiAnalytics'))}
withOrgPath
>
<Route path="/ai-analytics/" withOrgPath>
<IndexRoute component={make(() => import('sentry/views/aiAnalytics/landing'))} />
</Route>
);
Expand Down
181 changes: 181 additions & 0 deletions static/app/views/aiAnalytics/PipelinesTable.tsx
Original file line number Diff line number Diff line change
@@ -0,0 +1,181 @@
import {browserHistory} from 'react-router';
import type {Location} from 'history';

import type {GridColumnHeader} from 'sentry/components/gridEditable';
import GridEditable, {COL_WIDTH_UNDEFINED} from 'sentry/components/gridEditable';
import Link from 'sentry/components/links/link';
import type {CursorHandler} from 'sentry/components/pagination';
import Pagination from 'sentry/components/pagination';
import {t} from 'sentry/locale';
import type {Organization} from 'sentry/types';
import type {EventsMetaType} from 'sentry/utils/discover/eventView';
import {getFieldRenderer} from 'sentry/utils/discover/fieldRenderers';
import type {Sort} from 'sentry/utils/discover/fields';
import {RATE_UNIT_TITLE, RateUnit} from 'sentry/utils/discover/fields';
import {VisuallyCompleteWithData} from 'sentry/utils/performanceForSentry';
import {decodeScalar, decodeSorts} from 'sentry/utils/queryString';
import {MutableSearch} from 'sentry/utils/tokenizeSearch';
import {useLocation} from 'sentry/utils/useLocation';
import useOrganization from 'sentry/utils/useOrganization';
import {normalizeUrl} from 'sentry/utils/withDomainRequired';
import {renderHeadCell} from 'sentry/views/starfish/components/tableCells/renderHeadCell';
import {useSpanMetrics} from 'sentry/views/starfish/queries/useSpanMetrics';
import type {MetricsResponse} from 'sentry/views/starfish/types';
import {QueryParameterNames} from 'sentry/views/starfish/views/queryParameters';
import {DataTitles} from 'sentry/views/starfish/views/spans/types';

type Row = Pick<
MetricsResponse,
| 'project.id'
| 'span.description'
| 'span.group'
| 'spm()'
| 'avg(span.self_time)'
| 'sum(span.self_time)'
| 'time_spent_percentage()'
>;

type Column = GridColumnHeader<
'span.description' | 'spm()' | 'avg(span.self_time)' | 'time_spent_percentage()'
>;

const COLUMN_ORDER: Column[] = [
{
key: 'span.description',
name: t('AI Pipeline name'),
width: COL_WIDTH_UNDEFINED,
},
{
key: 'spm()',
name: `${t('Times')} ${RATE_UNIT_TITLE[RateUnit.PER_MINUTE]}`,
width: COL_WIDTH_UNDEFINED,
},
{
key: `avg(span.self_time)`,
name: DataTitles.avg,
width: COL_WIDTH_UNDEFINED,
},
{
key: 'time_spent_percentage()',
name: DataTitles.timeSpent,
width: COL_WIDTH_UNDEFINED,
},
];

const SORTABLE_FIELDS = ['avg(span.self_time)', 'spm()', 'time_spent_percentage()'];

type ValidSort = Sort & {
field: 'spm()' | 'avg(span.self_time)' | 'time_spent_percentage()';
};

export function isAValidSort(sort: Sort): sort is ValidSort {
return (SORTABLE_FIELDS as unknown as string[]).includes(sort.field);
}

export function PipelinesTable() {
const location = useLocation();
const organization = useOrganization();
const cursor = decodeScalar(location.query?.[QueryParameterNames.SPANS_CURSOR]);
const sortField = decodeScalar(location.query?.[QueryParameterNames.SPANS_SORT]);

let sort = decodeSorts(sortField).filter(isAValidSort)[0];
if (!sort) {
sort = {field: 'time_spent_percentage()', kind: 'desc'};
}
const {data, isLoading, meta, pageLinks, error} = useSpanMetrics({
search: new MutableSearch('span.op:ai.pipeline.langchain'),
fields: [
'project.id',
'span.group',
'span.description',
'spm()',
'avg(span.self_time)',
'sum(span.self_time)',
'time_spent_percentage()',
],
sorts: [sort],
limit: 25,
cursor,
});

const handleCursor: CursorHandler = (newCursor, pathname, query) => {
browserHistory.push({
pathname,
query: {...query, [QueryParameterNames.SPANS_CURSOR]: newCursor},
});
};

return (
<VisuallyCompleteWithData
id="PipelinesTable"
hasData={data.length > 0}
isLoading={isLoading}
>
<GridEditable
isLoading={isLoading}
error={error}
data={data}
columnOrder={COLUMN_ORDER}
columnSortBy={[
{
key: sort.field,
order: sort.kind,
},
]}
grid={{
renderHeadCell: column =>
renderHeadCell({
column,
sort,
location,
sortParameterName: QueryParameterNames.SPANS_SORT,
}),
renderBodyCell: (column, row) =>
renderBodyCell(column, row, meta, location, organization),
}}
location={location}
/>
<Pagination pageLinks={pageLinks} onCursor={handleCursor} />
</VisuallyCompleteWithData>
);
}

function renderBodyCell(
column: Column,
row: Row,
meta: EventsMetaType | undefined,
location: Location,
organization: Organization
) {
if (column.key === 'span.description') {
if (!row['span.description']) {
return <span>(unknown)</span>;
}
if (!row['span.group']) {
return <span>{row['span.description']}</span>;
}
return (
<Link
to={normalizeUrl(
`/organizations/${organization.slug}/ai-analytics/pipelines/${row['span.group']}`
)}
>
{row['span.description']}
</Link>
);
}

if (!meta || !meta?.fields) {
return row[column.key];
}

const renderer = getFieldRenderer(column.key, meta.fields, false);

const rendered = renderer(row, {
location,
organization,
unit: meta.units?.[column.key],
});

return rendered;
}
168 changes: 168 additions & 0 deletions static/app/views/aiAnalytics/aiAnalyticsCharts.tsx
Original file line number Diff line number Diff line change
@@ -0,0 +1,168 @@
import styled from '@emotion/styled';

import {t} from 'sentry/locale';
import {space} from 'sentry/styles/space';
import {MetricDisplayType} from 'sentry/utils/metrics/types';
import {useMetricsQuery} from 'sentry/utils/metrics/useMetricsQuery';
import usePageFilters from 'sentry/utils/usePageFilters';
import {MetricChartContainer} from 'sentry/views/dashboards/metrics/chart';

export function TotalTokensUsedChart() {
const {selection, isReady: isGlobalSelectionReady} = usePageFilters();
const {
data: timeseriesData,
isLoading,
isError,
error,
} = useMetricsQuery(
[
{
name: 'total',
mri: `c:spans/ai.total_tokens.used@none`,
op: 'sum',
},
],
selection,
{
intervalLadder: 'dashboard',
}
);

if (!isGlobalSelectionReady) {
return null;
}

if (isError) {
return <div>{'' + error}</div>;
}

return (
<TokenChartContainer>
<PanelTitle>{t('Total tokens used')}</PanelTitle>
<MetricChartContainer
timeseriesData={timeseriesData}
isLoading={isLoading}
metricQueries={[
{
name: 'mql',
formula: '$total',
},
]}
displayType={MetricDisplayType.AREA}
chartHeight={200}
/>
</TokenChartContainer>
);
}

export function NumberOfPipelinesChart() {
const {selection, isReady: isGlobalSelectionReady} = usePageFilters();
const {
data: timeseriesData,
isLoading,
isError,
error,
} = useMetricsQuery(
[
{
name: 'number',
mri: `d:spans/exclusive_time@millisecond`,
op: 'count',
query: 'span.op:"ai.pipeline.langchain"', // TODO: for now this is the only AI "pipeline" supported
},
],
selection,
{
intervalLadder: 'dashboard',
}
);

if (!isGlobalSelectionReady) {
return null;
}

if (isError) {
return <div>{'' + error}</div>;
}

return (
<TokenChartContainer>
<PanelTitle>{t('Number of AI pipelines')}</PanelTitle>
<MetricChartContainer
timeseriesData={timeseriesData}
isLoading={isLoading}
metricQueries={[
{
name: 'mql',
formula: '$number',
},
]}
displayType={MetricDisplayType.AREA}
chartHeight={200}
/>
</TokenChartContainer>
);
}

export function PipelineDurationChart() {
const {selection, isReady: isGlobalSelectionReady} = usePageFilters();
const {
data: timeseriesData,
isLoading,
isError,
error,
} = useMetricsQuery(
[
{
name: 'number',
mri: `d:spans/exclusive_time@millisecond`,
op: 'avg',
query: 'span.op:"ai.pipeline.langchain"', // TODO: for now this is the only AI "pipeline" supported
},
],
selection,
{
intervalLadder: 'dashboard',
}
);

if (!isGlobalSelectionReady) {
return null;
}

if (isError) {
return <div>{'' + error}</div>;
}

return (
<TokenChartContainer>
<PanelTitle>{t('AI pipeline duration')}</PanelTitle>
<MetricChartContainer
timeseriesData={timeseriesData}
isLoading={isLoading}
metricQueries={[
{
name: 'mql',
formula: '$number',
},
]}
displayType={MetricDisplayType.AREA}
chartHeight={200}
/>
</TokenChartContainer>
);
}

const PanelTitle = styled('h5')`
padding: ${space(3)} ${space(3)} 0;
margin: 0;
`;

const TokenChartContainer = styled('div')`
overflow: hidden;
border: 1px solid ${p => p.theme.border};
border-radius: ${p => p.theme.borderRadius};
height: 100%;
display: flex;
flex-direction: column;
`;
Loading