-
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathperformance_monitor.py
570 lines (476 loc) · 21.9 KB
/
performance_monitor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
import psutil
import os
import gc
import sys
import logging
import threading
from collections import defaultdict, OrderedDict
from datetime import datetime, timedelta
import time
import json
import platform
from settings import get_setting
class PerformanceMonitor:
"""Monitor system performance metrics"""
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
def __init__(self):
"""Initialize the performance monitor"""
# Only initialize once
if hasattr(self, 'initialized'):
return
self.initialized = True
# Initialize performance logger
self.performance_logger = logging.getLogger('performance_logger')
self.performance_logger.propagate = False # Don't propagate to root logger
# Store CPU metrics
self.cpu_times = defaultdict(list) # Store CPU times per process
self.cpu_percent_history = defaultdict(list) # Store CPU % history
self.process = psutil.Process()
self.last_cpu_measure_time = None
self.cpu_measure_interval = 1.0 # seconds
# Store memory snapshots (timestamp, snapshot)
self.memory_snapshots = []
# Store last memory info for delta calculation
self._last_memory_info = None
# Initialize JSON logger
self.json_logger = logging.getLogger('json_performance_logger')
self.json_logger.propagate = False
log_dir = os.environ.get('USER_LOGS', '/user/logs')
if not os.path.exists(log_dir):
os.makedirs(log_dir)
self.log_file = os.path.join(log_dir, 'performance_log.json')
# Maximum number of entries to keep in the log file
self.max_entries = 1440 # 24 hours worth of entries at 1 per minute
# Polling intervals (in seconds)
self.basic_metrics_interval = 15 # Poll basic metrics every 15 seconds
self.detailed_metrics_interval = 60 # Poll detailed metrics every minute
self.snapshot_interval = 1800 # Take memory snapshots every 30 minutes
self.log_cleanup_interval = 3600 # Clean up logs every hour
# Timestamps for last operations
self.last_detailed_check = datetime.now()
self.last_snapshot = datetime.now()
self.last_cleanup = datetime.now()
# Write initial metadata
self._write_metadata()
def start_monitoring(self):
"""Start comprehensive performance monitoring"""
if not hasattr(self, 'monitor_thread') or not self.monitor_thread.is_alive():
self.monitor_thread = threading.Thread(target=self._monitor_loop, daemon=True)
self.monitor_thread.start()
self.performance_logger.info("Started performance monitoring")
def stop_monitoring(self):
"""Stop performance monitoring"""
try:
pass
except Exception as e:
self.performance_logger.error(f"Error stopping performance monitoring: {e}")
def _monitor_loop(self):
"""Main monitoring loop that collects various performance metrics"""
while True:
try:
# Always collect basic metrics at higher frequency
self._log_basic_metrics()
current_time = datetime.now()
# Check if it's time for detailed metrics
if (current_time - self.last_detailed_check).seconds >= self.detailed_metrics_interval:
self.performance_logger.info("\n" + "=" * 100)
self.performance_logger.info(" " * 40 + "DETAILED PERFORMANCE REPORT" + " " * 40)
self.performance_logger.info("=" * 100 + "\n")
self._log_detailed_memory()
self.performance_logger.info("\n" + "-" * 100 + "\n")
self._log_memory_growth()
self.performance_logger.info("\n" + "-" * 100 + "\n")
self._log_file_descriptors()
self.performance_logger.info("\n" + "-" * 100 + "\n")
self._log_cpu_metrics()
self.performance_logger.info("\n" + "-" * 100 + "\n")
self.last_detailed_check = current_time
# Check if it's time for a memory snapshot
if (current_time - self.last_snapshot).seconds >= self.snapshot_interval:
self._take_memory_snapshot()
self.last_snapshot = current_time
# Check if it's time to clean up old log entries
if (current_time - self.last_cleanup).seconds >= self.log_cleanup_interval:
self._cleanup_old_logs()
self.last_cleanup = current_time
except Exception as e:
self.performance_logger.error(f"Error in performance monitoring: {str(e)}")
time.sleep(self.basic_metrics_interval) # Sleep for basic metrics interval
def _format_size(self, size_bytes):
"""Format size in bytes to human readable format"""
for unit in ['B', 'KB', 'MB', 'GB']:
if size_bytes < 1024:
return f"{size_bytes:.1f} {unit}"
size_bytes /= 1024
return f"{size_bytes:.1f} TB"
def _write_metadata(self):
"""Write metadata to the log file"""
# Just ensure the file exists and is empty
with open(self.log_file, 'w') as f:
pass
def _write_entry(self, entry):
"""Append a single entry to the log file"""
try:
# Append entry directly without reading the file
with open(self.log_file, 'a') as f:
f.write(json.dumps(entry) + '\n')
except Exception as e:
self.performance_logger.error(f"Error writing entry: {e}")
def _log_basic_metrics(self):
"""Log basic CPU and memory metrics"""
try:
process = psutil.Process(os.getpid())
# Get CPU info with longer interval for more accurate measurement
cpu_percent = process.cpu_percent(interval=2)
cpu_times = process.cpu_times()
# Get memory info with deltas
memory_info = process.memory_info()
virtual_memory = psutil.virtual_memory()
# Calculate actual memory usage percentage without cache
total_memory = virtual_memory.total
used_memory = virtual_memory.total - virtual_memory.available
memory_percent = (used_memory / total_memory) * 100
memory_delta_str = ""
if self._last_memory_info is not None:
try:
memory_delta = (memory_info.rss - self._last_memory_info) / 1024 / 1024
memory_delta_str = f" ({'+' if memory_delta >= 0 else ''}{memory_delta:.1f} MB since last check)"
except Exception:
memory_delta_str = ""
self._last_memory_info = memory_info.rss
# Create entry with UTC timestamp
current_time = datetime.utcnow()
entry = {
"timestamp": current_time.isoformat(),
"type": "basic_metrics",
"metrics": {
"cpu_percent": cpu_percent,
"memory_rss": memory_info.rss / 1024 / 1024, # Convert to MB
"memory_vms": memory_info.vms / 1024 / 1024, # Convert to MB
"system_memory_used": memory_percent,
"swap_used": psutil.swap_memory().used / 1024 / 1024, # Convert to MB
"cpu_user_time": cpu_times.user,
"cpu_system_time": cpu_times.system
}
}
# Write entry to log file
self._write_entry(entry)
# Log human-readable format
self.performance_logger.info(f"Current time: {datetime.now():%Y-%m-%d %H:%M:%S}")
self.performance_logger.info("""
📊 SYSTEM RESOURCES
------------------
🔲 CPU
Current Usage: {:>5.1f}%
User Time: {:>5.1f}s
System Time: {:>5.1f}s
💾 MEMORY
RSS Memory: {:>5.1f} MB{}
VMS Memory: {:>5.1f} MB
System Used: {:>5.1f}%
Swap Used: {:>5.1f} MB""".format(
cpu_percent,
cpu_times.user,
cpu_times.system,
memory_info.rss / 1024 / 1024,
memory_delta_str,
memory_info.vms / 1024 / 1024,
memory_percent,
psutil.swap_memory().used / 1024 / 1024
))
except Exception as e:
self.performance_logger.error(f"Error logging basic metrics: {e}")
def _log_detailed_memory(self):
"""Log detailed memory metrics"""
try:
process = psutil.Process(os.getpid())
# Get memory maps
memory_maps = process.memory_maps(grouped=True)
anon_maps = [m for m in memory_maps if not m.path]
file_maps = [m for m in memory_maps if m.path]
# Calculate total sizes
total_anon = sum(int(m.rss) for m in anon_maps)
total_file = sum(int(m.rss) for m in file_maps)
# Get open files
open_files = process.open_files()
file_sizes = defaultdict(int)
for f in open_files:
try:
file_sizes[f.path] = os.path.getsize(f.path)
except (OSError, IOError):
pass
# Get network connections
connections = process.connections()
conn_states = defaultdict(int)
for conn in connections:
conn_states[conn.status] += 1
# Get thread information
threads = process.threads()
thread_stats = []
for thread in threads:
thread_stats.append({
'id': thread.id,
'user_time': thread.user_time,
'system_time': thread.system_time
})
# Create entry for JSON log
entry = {
'timestamp': datetime.now().isoformat(),
'memory': {
'anonymous': {
'total_size': total_anon,
'count': len(anon_maps),
'formatted_size': self._format_size(total_anon)
},
'file_backed': {
'total_size': total_file,
'count': len(file_maps),
'formatted_size': self._format_size(total_file)
},
'open_files': {
'count': len(open_files),
'total_size': sum(file_sizes.values()),
'files': [{'path': k, 'size': v} for k, v in file_sizes.items()]
},
'network': {
'total_connections': len(connections),
'states': dict(conn_states)
},
'threads': {
'count': len(threads),
'stats': thread_stats
}
}
}
# Write entry to log file
self._write_entry(entry)
# Log to performance logger
self.performance_logger.info("""
💾 DETAILED MEMORY ANALYSIS
-------------------------
Anonymous Memory:
Total Size: {}
Number of Mappings: {}
File-backed Memory:
Total Size: {}
Number of Mappings: {}
Open Files: {}
Total Size: {}
Network Connections:
Total: {}
States: {}
Threads:
Count: {}
Active: {}""".format(
self._format_size(total_anon),
len(anon_maps),
self._format_size(total_file),
len(file_maps),
len(open_files),
self._format_size(sum(file_sizes.values())),
len(connections),
dict(conn_states),
len(threads),
sum(1 for t in threads if t.user_time > 0 or t.system_time > 0)
))
except Exception as e:
self.performance_logger.error(f"Error logging detailed memory: {e}")
def _log_memory_growth(self):
"""Log memory growth"""
try:
self.performance_logger.info("""
📈 MEMORY GROWTH
---------------
No memory growth data available""")
# Create log entry
log_entry = {
"timestamp": datetime.now().isoformat(),
"type": "memory_growth",
"metrics": {
"message": "No memory growth data available"
}
}
# Write entry to log file
self._write_entry(log_entry)
except Exception as e:
self.performance_logger.error(f"Error logging memory growth: {e}")
def _log_file_descriptors(self):
"""Log information about open file descriptors"""
try:
process = psutil.Process(os.getpid())
open_files = process.open_files()
open_connections = process.connections()
file_types = defaultdict(int)
for f in open_files:
ext = os.path.splitext(f.path)[1] or 'no_extension'
file_types[ext] += 1
conn_status = defaultdict(int)
for conn in open_connections:
conn_status[conn.status] += 1
self.performance_logger.info("""
🔌 RESOURCE HANDLES
-----------------
📄 Open Files: {}
By Type: {}
🌐 Network Connections: {}
By Status: {}""".format(
len(open_files),
', '.join(f"{ext}: {count}" for ext, count in file_types.items()),
len(open_connections),
', '.join(f"{status}: {count}" for status, count in conn_status.items()) if conn_status else "None"
))
# Create log entry
log_entry = {
"timestamp": datetime.now().isoformat(),
"type": "file_descriptors",
"metrics": {
"open_files_count": len(open_files),
"file_types": {ext: count for ext, count in file_types.items()},
"network_connections_count": len(open_connections),
"connection_statuses": {str(status): count for status, count in conn_status.items()}
}
}
# Write entry to log file
self._write_entry(log_entry)
except Exception as e:
self.performance_logger.error(f"Error logging file descriptors: {e}")
def _log_cpu_metrics(self):
"""Log CPU usage metrics without full profiling"""
try:
current_time = time.time()
# Only measure if enough time has passed
if (self.last_cpu_measure_time is None or
current_time - self.last_cpu_measure_time >= self.cpu_measure_interval):
# Get process CPU times
cpu_times = self.process.cpu_times()
self.cpu_times['user'].append(cpu_times.user)
self.cpu_times['system'].append(cpu_times.system)
# Get CPU percentage for process (non-blocking)
cpu_percent = self.process.cpu_percent(interval=None)
self.cpu_percent_history['process'].append(cpu_percent)
# Get per-thread CPU times
thread_times = []
for thread in self.process.threads():
thread_times.append({
'id': thread.id,
'user_time': thread.user_time,
'system_time': thread.system_time
})
# Keep only last 60 measurements (1 hour at 1 min intervals)
max_history = 60
self.cpu_times['user'] = self.cpu_times['user'][-max_history:]
self.cpu_times['system'] = self.cpu_times['system'][-max_history:]
self.cpu_percent_history['process'] = self.cpu_percent_history['process'][-max_history:]
# Calculate CPU usage deltas
user_delta = self.cpu_times['user'][-1] - self.cpu_times['user'][0] if len(self.cpu_times['user']) > 1 else 0
system_delta = self.cpu_times['system'][-1] - self.cpu_times['system'][0] if len(self.cpu_times['system']) > 1 else 0
# Log CPU metrics
self.performance_logger.info(f"""
CPU Usage Metrics:
----------------
Process CPU: {cpu_percent:.1f}%
User Time Δ: {user_delta:.2f}s
System Time Δ: {system_delta:.2f}s
Active Threads: {len(thread_times)}
Top Thread Usage:
{self._format_thread_times(thread_times[:5])}
""")
# Create JSON log entry with CPU profiling information
log_entry = {
"timestamp": datetime.now().isoformat(),
"type": "cpu_metrics",
"metrics": {
"process_cpu_percent": cpu_percent,
"user_time_delta": user_delta,
"system_time_delta": system_delta,
"active_threads": len(thread_times),
"cpu_times": {
"user": cpu_times.user,
"system": cpu_times.system,
"children_user": getattr(cpu_times, 'children_user', 0),
"children_system": getattr(cpu_times, 'children_system', 0)
},
"thread_times": sorted(
thread_times,
key=lambda x: x['user_time'] + x['system_time'],
reverse=True
)[:5] # Include only top 5 threads
}
}
# Write entry to log file
self._write_entry(log_entry)
# Update measurement time
self.last_cpu_measure_time = current_time
except Exception as e:
self.performance_logger.error(f"Error logging CPU metrics: {e}")
def _format_thread_times(self, thread_times):
"""Format thread times for logging"""
return '\n'.join(
f" Thread {t['id']}: {t['user_time']:.2f}s user, {t['system_time']:.2f}s system"
for t in sorted(thread_times, key=lambda x: x['user_time'] + x['system_time'], reverse=True)
)
def _take_memory_snapshot(self):
"""Take a memory snapshot"""
try:
self.performance_logger.info("""
📈 MEMORY SNAPSHOT
---------------
No memory snapshot available""")
# Create log entry
log_entry = {
"timestamp": datetime.now().isoformat(),
"type": "memory_snapshot",
"metrics": {
"message": "No memory snapshot available"
}
}
# Write entry to log file
self._write_entry(log_entry)
except Exception as e:
self.performance_logger.error(f"Error taking memory snapshot: {e}")
def _cleanup_old_logs(self):
"""Clean up old log entries to prevent file growth"""
try:
# Keep last 24 hours of entries (one entry per minute = 1440 entries)
max_age = 24 * 60 * 60 # 24 hours in seconds
cutoff_time = time.time() - max_age
if not os.path.exists(self.log_file):
return
# Create a temporary file
temp_file = self.log_file + '.temp'
kept_count = 0
removed_count = 0
with open(self.log_file, 'r') as old_file, open(temp_file, 'w') as new_file:
for line in old_file:
try:
entry = json.loads(line.strip())
entry_time = datetime.fromisoformat(entry['timestamp']).timestamp()
if entry_time >= cutoff_time:
new_file.write(line)
kept_count += 1
else:
removed_count += 1
except (json.JSONDecodeError, KeyError, ValueError):
# Keep lines we can't parse, just in case
new_file.write(line)
kept_count += 1
# Replace old file with new file
os.replace(temp_file, self.log_file)
self.performance_logger.info(f"Cleaned up performance logs: kept {kept_count} entries, removed {removed_count} entries")
except Exception as e:
self.performance_logger.error(f"Error cleaning up old log entries: {e}")
# If cleanup fails, don't leave temp file behind
if os.path.exists(temp_file):
try:
os.remove(temp_file)
except:
pass
# Create singleton instance but don't start monitoring yet
monitor = PerformanceMonitor()
def start_performance_monitoring():
"""Start performance monitoring after app initialization"""
monitor.start_monitoring()