forked from primeMover2011/deep-q-bananacollector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
44 lines (38 loc) · 1.33 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import torch
import torch.nn as nn
import torch.nn.functional as F
class QNetwork(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, seed, fc1_units=64, fc2_units=64):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
fc1_units (int): Number of nodes in first hidden layer
fc2_units (int): Number of nodes in second hidden layer
"""
super(QNetwork, self).__init__()
self.seed = torch.manual_seed(seed)
self.feature =nn.Sequential(
nn.Linear(state_size, fc1_units),
nn.SELU(),
nn.Linear(fc1_units, fc2_units),
nn.SELU()
)
self.advantage = nn.Sequential(
nn.Linear(fc2_units, 128),
nn.SELU(),
nn.Linear(128, action_size)
)
self.value = nn.Sequential(
nn.Linear(fc2_units, 128),
nn.SELU(),
nn.Linear(128, 1)
)
def forward(self, state):
x = self.feature(state)
advantage = self.advantage(x)
value = self.value(x)
return value + advantage - advantage.mean()