-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathval_quant.py
65 lines (51 loc) · 2.02 KB
/
val_quant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from imagenet import NormalizeMethod
from multiprocessing import Pool
from tensorflow.keras.models import load_model
import tensorflow.lite as tflite
from tqdm import tqdm
import argparse
import imagenet
global interpreter, input_index, output_index
def init(tflite_model_file):
global interpreter, input_index, output_index
interpreter = tflite.Interpreter(tflite_model_file)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
input_index = input_details[0]["index"]
output_index = output_details[0]["index"]
def eval(data):
image, label = data
global interpreter, input_index, output_index
interpreter.set_tensor(input_index, image)
interpreter.invoke()
prediction = interpreter.get_tensor(output_index)
return int(prediction.argmax() == label[0])
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'--tflite_model_file',
dest="tflite_model_file",
required=True)
parser.add_argument('--imagenet_path', dest="imagenet_path", required=True)
parser.add_argument('--image_size', type=int, default=224)
parser.add_argument('--cpus', dest="cpus", type=int, default=24)
parser.add_argument('--no_background', action='store_true')
args = parser.parse_args()
val_size = 50000
dataset = imagenet.get_val_dataset(
args.imagenet_path,
1,
imagenet.NormalizeMethod.NONE,
image_size=args.image_size,
include_background=not args.no_background)
dataset = dataset.take(val_size).as_numpy_iterator()
correct = 0
with Pool(processes=args.cpus, initializer=init, initargs=(args.tflite_model_file,)) as pool:
with tqdm(pool.imap_unordered(eval, dataset), total=val_size) as t:
for idx, result in enumerate(t, start=1):
correct += result
t.set_postfix(correct=correct, accuracy=correct / idx)
print(f"{correct}/{val_size}")
if __name__ == '__main__':
main()