-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
116 lines (97 loc) · 3.71 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# saving the trouble of waiting for hefty imports if the data folder does not exist anyway
# -------------------------------------------------------
from pathlib import Path
data = Path("Data/Training_Data")
if not data.exists():
exit("Data folder does not exist")
from imports import tf, plt, keras, layers, Sequential, randint, characters, ReduceLROnPlateau, regularizers
# -------------------------------------------------------
def create_model():
batch = 32
img_h = 180
img_w = 180
random_seed = randint(1, 1001)
training_dataset = tf.keras.utils.image_dataset_from_directory(
data,
validation_split=0.15,
subset="training",
seed=random_seed,
image_size=(img_h, img_w),
batch_size=batch
)
validation_dataset = tf.keras.utils.image_dataset_from_directory(
data,
validation_split=0.15,
subset="validation",
seed=random_seed,
image_size=(img_h, img_w),
batch_size=batch
)
plt.figure(figsize=(10, 10))
for images, labels in training_dataset.take(1):
for i in range(9):
ax = plt.subplot(3, 3, i + 1)
plt.imshow(images[i].numpy().astype("uint8"))
plt.title(characters[labels[i]])
plt.axis("off")
AUTOTUNE = tf.data.AUTOTUNE
training_dataset = training_dataset.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
validation_dataset = validation_dataset.cache().prefetch(buffer_size=AUTOTUNE)
normalization_layer = layers.Rescaling(1./255)
normalized_ds = training_dataset.map(lambda x, y: (normalization_layer(x), y))
_ , keras.labels_batch = next(iter(normalized_ds))
num_classes = len(characters)
model = Sequential([
layers.Rescaling(1./255, input_shape=(img_h, img_w, 3)),
layers.Conv2D(32, 3, padding='same'),
layers.Activation('relu'),
layers.MaxPooling2D(),
layers.Dropout(0.3),
layers.Conv2D(64, 3, padding='same'),
layers.Activation('relu'),
layers.MaxPooling2D(),
layers.Dropout(0.3),
layers.Conv2D(64, 3, padding='same'),
layers.Activation('relu'),
layers.MaxPooling2D(),
layers.Dropout(0.3),
layers.Conv2D(128, 3, padding='same'),
layers.Activation('relu'),
layers.MaxPooling2D(),
layers.Dropout(0.3),
layers.Flatten(),
layers.Dense(256),
layers.Activation('relu'),
layers.Dropout(0.5),
layers.Dense(num_classes, activation='softmax')
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['accuracy'])
model.summary()
epochs=15
reduce_learning_rate = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=2, min_lr=0.005)
history = model.fit(
training_dataset,
validation_data=validation_dataset,
epochs=epochs,
callbacks=[reduce_learning_rate]
)
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(epochs)
plt.figure(figsize=(8, 8))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
return model