@@ -6,7 +6,6 @@ module PoissonHHODistributedTests
6
6
using PartitionedArrays
7
7
using Plots
8
8
9
-
10
9
function setup_reconstruction_operator (model, order, dΩ, d∂K)
11
10
nK = get_cell_normal_vector (d∂K. quad. trian)
12
11
refferecᵤ = ReferenceFE (orthogonal_basis, Float64, order+ 1 )
@@ -28,7 +27,6 @@ module PoissonHHODistributedTests
28
27
ReconstructionFEOperator ((m,n), U, V)
29
28
end
30
29
31
-
32
30
function setup_projection_operator (UK_U∂K,VK_V∂K,R,dΩ,d∂K)
33
31
m ( (uK,u∂K), (vK,v∂K) ) = ∫ (vK* uK)dΩ + ∫ (v∂K* u∂K)d∂K
34
32
function n (uK_u∂K, (vK,v∂K))
@@ -49,8 +47,6 @@ module PoissonHHODistributedTests
49
47
GridapHybrid. ProjectionFEOperator ((m,n),UK_U∂K,VK_V∂K,R)
50
48
end
51
49
52
-
53
-
54
50
# Compute length of diagonals in the reference domain
55
51
function foo (m)
56
52
p0 = evaluate (m,Point (0.0 ,0.0 ))
@@ -62,7 +58,6 @@ module PoissonHHODistributedTests
62
58
# maximum( norm(p1-p0), norm(p2-p3) )
63
59
end
64
60
65
-
66
61
function setup_reconstruction_operator (model:: GridapDistributed.GenericDistributedDiscreteModel ,
67
62
order, dΩ:: GridapDistributed.DistributedMeasure , d∂K:: GridapDistributed.DistributedMeasure )
68
63
R = map (local_views (model), local_views (dΩ), local_views (d∂K)) do m, dΩi, d∂Ki
@@ -146,10 +141,6 @@ module PoissonHHODistributedTests
146
141
end
147
142
end
148
143
149
- # ranks = with_debug() do distribute
150
- # distribute(LinearIndices((prod(np),)))
151
- # end
152
-
153
144
function solve_hho (domain, mesh_partition, np, ranks, order, u)
154
145
model = CartesianDiscreteModel (ranks, np, domain, mesh_partition)
155
146
@@ -229,7 +220,8 @@ module PoissonHHODistributedTests
229
220
domain = (0 ,1 ,0 ,1 )
230
221
231
222
np = (2 ,2 )
232
- ns = [np[1 ]* 2 ^ i for i in 2 : 5 ]
223
+ # ns = [np[1]*2^i for i in 2:5]
224
+ ns = [2 ^ i for i in 2 : 3 ]
233
225
# mesh_partition = (2,2)
234
226
235
227
order = 1
@@ -242,53 +234,4 @@ module PoissonHHODistributedTests
242
234
shape= :auto ,
243
235
xlabel= " h" ,ylabel= " L2 error" ,legend= :bottomright ))
244
236
245
- end
246
-
247
- # xh = get_trial_fe_basis(U);
248
- # yh = get_fe_basis(V);
249
-
250
- # xh1 = local_views(xh).items[1]
251
- # yh1 = local_views(yh).items[1]
252
-
253
- # Ω1 = get_triangulation(xh1)
254
-
255
- # cmaps = collect1d(get_cell_map(Ω1))
256
- # h_arr = lazy_map(foo,cmaps)
257
- # # h_T = CellField(h_array,Ω,PhysicalDomain())
258
- # H_T = CellField(h_arr,Ω1)
259
- # H_T_1 = 1.0/H_T
260
-
261
- # Ω1_loc = local_views(Ω_loc).items[1]
262
- # dΩ1_loc = local_views(dΩ_loc).items[1]
263
-
264
- # h_T=CellField(get_array(∫(1)dΩ1_loc),Ω1_loc)
265
- # h_T_1=1.0/h_T
266
-
267
-
268
- # P1 = local_views(P).items[1]
269
-
270
- # uK_u∂K_ΠK,uK_u∂K_Π∂K=P1(xh1)
271
- # vK_v∂K_ΠK,vK_v∂K_Π∂K=P1(yh1)
272
-
273
- # uK_ΠK , u∂K_ΠK = uK_u∂K_ΠK
274
- # uK_Π∂K , u∂K_Π∂K = uK_u∂K_Π∂K
275
-
276
- # vK_ΠK , v∂K_ΠK = vK_v∂K_ΠK
277
- # vK_Π∂K , v∂K_Π∂K = vK_v∂K_Π∂K
278
-
279
- # vK_Π∂K_vK_ΠK=vK_Π∂K-vK_ΠK
280
- # v∂K_Π∂K_v∂K_ΠK=v∂K_Π∂K-v∂K_ΠK
281
- # uK_Π∂K_uK_ΠK=uK_Π∂K-uK_ΠK
282
- # u∂K_Π∂K_u∂K_ΠK=u∂K_Π∂K-u∂K_ΠK
283
-
284
- # d∂K_loc1 = local_views(d∂K_loc).items[1]
285
-
286
- # (h_T_1*(vK_Π∂K_vK_ΠK)*(uK_Π∂K_uK_ΠK))
287
-
288
- # ∫(h_T_1*(vK_Π∂K_vK_ΠK)*(uK_Π∂K_uK_ΠK))d∂K_loc1 +
289
- # ∫(h_T_1*(v∂K_Π∂K_v∂K_ΠK)*(u∂K_Π∂K_u∂K_ΠK))d∂K_loc1 +
290
- # ∫(h_T_1*(vK_Π∂K_vK_ΠK)*(u∂K_Π∂K_u∂K_ΠK))d∂K_loc1 +
291
- # ∫(h_T_1*(v∂K_Π∂K_v∂K_ΠK)*(uK_Π∂K_uK_ΠK))d∂K_loc1
292
-
293
-
294
-
237
+ end
0 commit comments