-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeneralized.py
125 lines (88 loc) · 2.66 KB
/
generalized.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#!/usr/bin/env python
# coding: utf-8
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# from app import *
# location = input('Enter data location: ')
data = pd.read_csv(destination1)
type(data['LoanAmount'][0])
#extract numerical data columns
numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
newdf = data.select_dtypes(include=numerics)
#FIll missing values
for i in data.columns:
data[i].fillna(data[i].mode()[0], inplace=True)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 0)
#
from sklearn import model_selection
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
#
results = []
names = []
seed = 7
scoring = 'accuracy'
for name, model in models:
kfold = model_selection.KFold(n_splits=20, random_state=seed)
cv_results = model_selection.cross_val_score(model, X, y, cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
print(msg)
# import mpld3
fig = plt.figure(figsize=(15,10))
fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)
plt.boxplot(results)
ax.set_xticklabels(names)
plt.show()
#
results = []
names = []
seed = 7
scoring = 'accuracy'
for name, model in models:
kfold = model_selection.KFold(n_splits=20, random_state=seed)
cv_results = model_selection.cross_val_score(model, X, y, cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
print(msg)
#
# import mpld3
fig = plt.figure(figsize=(15,10))
fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)
plt.boxplot(results)
ax.set_xticklabels(names)
plt.show()
#
results = []
names = []
seed = 7
scoring = 'accuracy'
for name, model in models:
kfold = model_selection.KFold(n_splits=20, random_state=seed)
cv_results = model_selection.cross_val_score(model, X, y, cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
print(msg)
#
results = []
names = []
seed = 7
scoring = 'accuracy'
for name, model in models:
kfold = model_selection.KFold(n_splits=20, random_state=seed)
cv_results = model_selection.cross_val_score(model, X, y, cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
print(msg)