-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModel.cs
371 lines (311 loc) · 19.6 KB
/
Model.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
using System;
using System.Collections.Generic;
namespace Q2MdlGen
{
public class Model
{
public string Name = "";
public List<double[]> Vertices = new List<double[]>();
public List<double[]> Uvs = new List<double[]>();
public List<double[]> Normals = new List<double[]>();
public List<int[][]> Faces = new List<int[][]>();
public Int32 OffsetX = 0;
public Int32 OffsetY = 0;
public Int32 OffsetZ = 0;
private bool Harmonized = false;
public Model[] SplitModelInt16()
{
var harmonizedModel = this;
if (!harmonizedModel.Harmonized)
throw new Exception("Model needs to be harmonized");
var blocks = new Dictionary<int, Dictionary<int, Dictionary<int, Model>>>();
var vertexMapping = new Dictionary<int, Dictionary<int, Dictionary<int, Dictionary<int, int>>>>(); //blockX, blockY, blockZ, srcVertexNum = modelVertexNum
//first sort all polygons NOT crossing block boundaries into the corresponding blocks
//We use some overlap so that most polygons do not have to split. A max block size is therefore defined not as 32768, but 24576 in each direction, 49153 total size instead of 65535
/*
* -0.5 -0.375 0 0.375 0.5 0.875 1.25 1.375 1.75
* [ Block 0 ] [ Block 2
* -32768 -24576 0 24576 32768 40960 65536 90112 98304
* [ Block 1 ]
*/
//BlockN0 = (P<0?-1:1)*Math.Max(0,(Math.Abs(P)-32768))/57344
//BlockN1 = (P<0?-1:1)*Math.Max(0,(Math.Abs(P)-24576))/57344
while (harmonizedModel.Faces.Count > 0)
{
int[][] face;
List<long[]> intersections;
do
{
face = harmonizedModel.Faces[0];
var faceXMin = Math.Min(Math.Min(harmonizedModel.Vertices[face[0][0]][0], harmonizedModel.Vertices[face[1][0]][0]), harmonizedModel.Vertices[face[2][0]][0]);
var faceXMax = Math.Max(Math.Max(harmonizedModel.Vertices[face[0][0]][0], harmonizedModel.Vertices[face[1][0]][0]), harmonizedModel.Vertices[face[2][0]][0]);
var faceYMin = Math.Min(Math.Min(harmonizedModel.Vertices[face[0][0]][1], harmonizedModel.Vertices[face[1][0]][1]), harmonizedModel.Vertices[face[2][0]][1]);
var faceYMax = Math.Max(Math.Max(harmonizedModel.Vertices[face[0][0]][1], harmonizedModel.Vertices[face[1][0]][1]), harmonizedModel.Vertices[face[2][0]][1]);
var faceZMin = Math.Min(Math.Min(harmonizedModel.Vertices[face[0][0]][2], harmonizedModel.Vertices[face[1][0]][2]), harmonizedModel.Vertices[face[2][0]][2]);
var faceZMax = Math.Max(Math.Max(harmonizedModel.Vertices[face[0][0]][2], harmonizedModel.Vertices[face[1][0]][2]), harmonizedModel.Vertices[face[2][0]][2]);
var distX = Math.Abs(faceXMin - faceXMax);
var distY = Math.Abs(faceYMin - faceYMax);
var distZ = Math.Abs(faceZMin - faceZMax);
var faceXMin0 = (faceXMin < 0 ? -1 : 1) * (Int64)Math.Max(0, (Math.Abs(faceXMin) + 32768)) / 57344;
var faceXMin1 = (faceXMin < 0 ? -1 : 1) * (Int64)Math.Max(0, (Math.Abs(faceXMin) + 24576)) / 57344;
var faceXMax0 = (faceXMax < 0 ? -1 : 1) * (Int64)Math.Max(0, (Math.Abs(faceXMax) + 32768)) / 57344;
var faceXMax1 = (faceXMax < 0 ? -1 : 1) * (Int64)Math.Max(0, (Math.Abs(faceXMax) + 24576)) / 57344;
var faceYMin0 = (faceYMin < 0 ? -1 : 1) * (Int64)Math.Max(0, (Math.Abs(faceYMin) + 32768)) / 57344;
var faceYMin1 = (faceYMin < 0 ? -1 : 1) * (Int64)Math.Max(0, (Math.Abs(faceYMin) + 24576)) / 57344;
var faceYMax0 = (faceYMax < 0 ? -1 : 1) * (Int64)Math.Max(0, (Math.Abs(faceYMax) + 32768)) / 57344;
var faceYMax1 = (faceYMax < 0 ? -1 : 1) * (Int64)Math.Max(0, (Math.Abs(faceYMax) + 24576)) / 57344;
var faceZMin0 = (faceZMin < 0 ? -1 : 1) * (Int64)Math.Max(0, (Math.Abs(faceZMin) + 32768)) / 57344;
var faceZMin1 = (faceZMin < 0 ? -1 : 1) * (Int64)Math.Max(0, (Math.Abs(faceZMin) + 24576)) / 57344;
var faceZMax0 = (faceZMax < 0 ? -1 : 1) * (Int64)Math.Max(0, (Math.Abs(faceZMax) + 32768)) / 57344;
var faceZMax1 = (faceZMax < 0 ? -1 : 1) * (Int64)Math.Max(0, (Math.Abs(faceZMax) + 24576)) / 57344;
var possibleMins = new List<long[]>()
{
new long[]{faceXMin0,faceYMin0,faceZMin0},
new long[]{faceXMin0,faceYMin0,faceZMin1},
new long[]{faceXMin0,faceYMin1,faceZMin0},
new long[]{faceXMin0,faceYMin1,faceZMin1},
new long[]{faceXMin1,faceYMin0,faceZMin0},
new long[]{faceXMin1,faceYMin0,faceZMin1},
new long[]{faceXMin1,faceYMin1,faceZMin0},
new long[]{faceXMin1,faceYMin1,faceZMin1}
};
var possibleMaxs = new List<long[]>()
{
new long[] { faceXMax0, faceYMax0, faceZMax0 },
new long[] { faceXMax0, faceYMax0, faceZMax1 },
new long[] { faceXMax0, faceYMax1, faceZMax0 },
new long[] { faceXMax0, faceYMax1, faceZMax1 },
new long[] { faceXMax1, faceYMax0, faceZMax0 },
new long[] { faceXMax1, faceYMax0, faceZMax1 },
new long[] { faceXMax1, faceYMax1, faceZMax0 },
new long[] { faceXMax1, faceYMax1, faceZMax1 }
};
intersections = new List<long[]>();
//find the one cube where min and max where min and max both fit. Sort by distance to 0,0, and take the one with the lowest distance
for (var m = 0; m < possibleMins.Count; m++)
for (var x = 0; x < possibleMins.Count; x++)
if (
possibleMins[m][0] == possibleMaxs[m][0]
&& possibleMins[m][1] == possibleMaxs[m][1]
&& possibleMins[m][2] == possibleMaxs[m][2]
)
intersections.Add(possibleMins[m]);
if (intersections.Count == 0) {
var newVertex = new double[]
{
(harmonizedModel.Vertices[face[1][0]][0]+harmonizedModel.Vertices[face[2][0]][0])/2,
(harmonizedModel.Vertices[face[1][0]][1]+harmonizedModel.Vertices[face[2][0]][1])/2,
(harmonizedModel.Vertices[face[1][0]][2]+harmonizedModel.Vertices[face[2][0]][2])/2
};
var newNormal = new double[]
{
(harmonizedModel.Normals[face[1][0]][0]+harmonizedModel.Normals[face[2][0]][0])/2,
(harmonizedModel.Normals[face[1][0]][1]+harmonizedModel.Normals[face[2][0]][1])/2,
(harmonizedModel.Normals[face[1][0]][2]+harmonizedModel.Normals[face[2][0]][2])/2
};
var newUv = new double[]
{
(harmonizedModel.Uvs[face[1][0]][0]+harmonizedModel.Uvs[face[2][0]][0])/2,
(harmonizedModel.Uvs[face[1][0]][1]+harmonizedModel.Uvs[face[2][0]][1])/2,
(harmonizedModel.Uvs[face[1][0]][2]+harmonizedModel.Uvs[face[2][0]][2])/2
};
harmonizedModel.Vertices.Add(newVertex);
harmonizedModel.Normals.Add(newNormal);
harmonizedModel.Uvs.Add(newUv);
var newIndex = harmonizedModel.Vertices.Count - 1;
harmonizedModel.Faces.Add(new int[3][]
{
new int[]{newIndex,newIndex,newIndex},
(int[])face[2].Clone(),
(int[])face[0].Clone()
});
harmonizedModel.Faces[0] = new int[][] { new int[] { newIndex, newIndex, newIndex }, (int[])face[0].Clone(), (int[])face[1].Clone() };
}
} while (intersections.Count == 0);
intersections.Sort((i0, i1) => (int)(Math.Sqrt(i0[0] * i0[0] + i0[1] * i0[1] + i0[2] * i0[2]) - Math.Sqrt(i1[0] * i1[0] + i1[1] * i1[1] + i1[2] * i1[2])));
var matchingCube = intersections[0];
if (!vertexMapping.ContainsKey((int)matchingCube[0]))
vertexMapping.Add((int)matchingCube[0], new Dictionary<int, Dictionary<int, Dictionary<int, int>>>());
if (!vertexMapping[(int)matchingCube[0]].ContainsKey((int)matchingCube[1]))
vertexMapping[(int)matchingCube[0]].Add((int)matchingCube[1], new Dictionary<int, Dictionary<int, int>>());
if (!vertexMapping[(int)matchingCube[0]][(int)matchingCube[1]].ContainsKey((int)matchingCube[2]))
{
vertexMapping[(int)matchingCube[0]][(int)matchingCube[1]].Add((int)matchingCube[2], new Dictionary<int, int>());
}
var vertexMappingSlice = vertexMapping[(int)matchingCube[0]][(int)matchingCube[1]][(int)matchingCube[2]];
if (!blocks.ContainsKey((int)matchingCube[0]))
blocks.Add((int)matchingCube[0], new Dictionary<int, Dictionary<int, Model>>());
if (!blocks[(int)matchingCube[0]].ContainsKey((int)matchingCube[1]))
blocks[(int)matchingCube[0]].Add((int)matchingCube[1], new Dictionary<int, Model>());
if (!blocks[(int)matchingCube[0]][(int)matchingCube[1]].ContainsKey((int)matchingCube[2]))
{
blocks[(int)matchingCube[0]][(int)matchingCube[1]].Add((int)matchingCube[2], new Model()
{
OffsetX = (int)matchingCube[0] * 57344,
OffsetY = (int)matchingCube[1] * 57344,
OffsetZ = (int)matchingCube[2] * 57344,
Harmonized = this.Harmonized,
Name = this.Name
});
}
var slice = blocks[(int)matchingCube[0]][(int)matchingCube[1]][(int)matchingCube[2]];
for(var b=0;b<3;b++)
if (!vertexMappingSlice.ContainsKey(face[b][0]) && face[b][0] >= 0)
{
vertexMappingSlice.Add(face[b][0], slice.Vertices.Count);
var sX = harmonizedModel.Vertices[face[b][0]][0];
var sY = harmonizedModel.Vertices[face[b][0]][1];
var sZ = harmonizedModel.Vertices[face[b][0]][2];
var mX = sX - slice.OffsetX;
var mY = sY - slice.OffsetY;
var mZ = sZ - slice.OffsetZ;
slice.Vertices.Add(new double[]{mX,mY,mZ});
slice.Uvs.Add(harmonizedModel.Uvs[face[b][1]]);
slice.Normals.Add(harmonizedModel.Normals[face[b][2]]);
if(Math.Abs(mX)>32768 || Math.Abs(mY) > 32768|| Math.Abs(mZ) > 32768)
{
throw new Exception("Vertex out of range, really shouldn't happen. "+mX+" "+mY+" "+mZ);
}
}
var v0=new int[3] {
vertexMappingSlice[face[0][0]],
vertexMappingSlice[face[0][1]],
vertexMappingSlice[face[0][2]] };
var v1 = new int[3] {
vertexMappingSlice[face[1][0]],
vertexMappingSlice[face[1][1]],
vertexMappingSlice[face[1][2]] };
var v2 = new int[3] {
vertexMappingSlice[face[2][0]],
vertexMappingSlice[face[2][1]],
vertexMappingSlice[face[2][2]] };
slice.Faces.Add(new int[3][] {v0,v1,v2});
harmonizedModel.Faces.RemoveAt(0);
}
var r = new List<Model>();
foreach (var i in blocks)
foreach (var j in i.Value)
foreach (var k in j.Value)
r.Add(k.Value);
return r.ToArray();
}
public TriangleSoup GetTriangleSoup()
{
this.TriangulateModel();
var r = new TriangleSoup
{
Triangles = new List<double[]>()
};
for (var i = 0; i < Faces.Count; i++)
r.Triangles.Add(new double[] {
Vertices[Faces[i][0][0]][1], Vertices[Faces[i][0][0]][0], Vertices[Faces[i][0][0]][2],
Vertices[Faces[i][1][0]][1], Vertices[Faces[i][1][0]][0], Vertices[Faces[i][1][0]][2],
Vertices[Faces[i][2][0]][1], Vertices[Faces[i][2][0]][0], Vertices[Faces[i][2][0]][2]
});
return r;
}
public Model[] SplitModel()
{
var harmonizedModel = this;
if (!harmonizedModel.Harmonized)
throw new Exception("Model needs to be harmonized");
var models = new List<Model>();
while (harmonizedModel.Faces.Count > 0)
{
var vertexMapping = new Dictionary<int, int>() { { -1, -1 } };
var slice = new Model()
{
Harmonized = this.Harmonized,
OffsetX = this.OffsetX,
OffsetY=this.OffsetY,
OffsetZ=this.OffsetZ,
Name=this.Name
};
while (slice.Faces.Count < 8192 && slice.Vertices.Count < 4094 && harmonizedModel.Faces.Count > 0)
{
if (!vertexMapping.ContainsKey(harmonizedModel.Faces[0][0][0]) && harmonizedModel.Faces[0][0][0] >= 0)
{
vertexMapping.Add(harmonizedModel.Faces[0][0][0], slice.Vertices.Count);
slice.Vertices.Add(harmonizedModel.Vertices[harmonizedModel.Faces[0][0][0]]);
slice.Uvs.Add(harmonizedModel.Uvs[harmonizedModel.Faces[0][0][1]]);
slice.Normals.Add(harmonizedModel.Normals[harmonizedModel.Faces[0][0][2]]);
}
if (!vertexMapping.ContainsKey(harmonizedModel.Faces[0][1][0]) && harmonizedModel.Faces[0][1][0] >= 0)
{
vertexMapping.Add(harmonizedModel.Faces[0][1][0], slice.Vertices.Count);
slice.Vertices.Add(harmonizedModel.Vertices[harmonizedModel.Faces[0][1][0]]);
slice.Uvs.Add(harmonizedModel.Uvs[harmonizedModel.Faces[0][1][1]]);
slice.Normals.Add(harmonizedModel.Normals[harmonizedModel.Faces[0][1][2]]);
}
if (!vertexMapping.ContainsKey(harmonizedModel.Faces[0][2][0]) && harmonizedModel.Faces[0][2][0] >= 0)
{
vertexMapping.Add(harmonizedModel.Faces[0][2][0], slice.Vertices.Count);
slice.Vertices.Add(harmonizedModel.Vertices[harmonizedModel.Faces[0][2][0]]);
slice.Uvs.Add(harmonizedModel.Uvs[harmonizedModel.Faces[0][2][1]]);
slice.Normals.Add(harmonizedModel.Normals[harmonizedModel.Faces[0][2][2]]);
}
slice.Faces.Add(new int[3][] {
new int[3] { vertexMapping[harmonizedModel.Faces[0][0][0]], vertexMapping[harmonizedModel.Faces[0][0][1]], vertexMapping[harmonizedModel.Faces[0][0][2]] },
new int[3] { vertexMapping[harmonizedModel.Faces[0][1][0]], vertexMapping[harmonizedModel.Faces[0][1][1]], vertexMapping[harmonizedModel.Faces[0][1][2]] },
new int[3] { vertexMapping[harmonizedModel.Faces[0][2][0]], vertexMapping[harmonizedModel.Faces[0][2][1]], vertexMapping[harmonizedModel.Faces[0][2][2]] }
});
harmonizedModel.Faces.RemoveAt(0);
}
if (slice.Faces.Count > 0)
models.Add(slice);
}
return models.ToArray();
}
public void TriangulateModel()
{
var model = this;
for (var i = 0; i < model.Faces.Count; i++)
{
if (model.Faces[i].Length < 4)
continue;
if (model.Faces[i].Length == 4)
{
model.Faces.Add(new int[3][] { new int[] { model.Faces[i][2][0], model.Faces[i][2][1], model.Faces[i][2][2] }, new int[] { model.Faces[i][3][0], model.Faces[i][3][1], model.Faces[i][3][2] }, new int[] { model.Faces[i][0][0], model.Faces[i][0][1], model.Faces[i][0][2] } });
model.Faces[i] = new int[][] { model.Faces[i][0], model.Faces[i][1], model.Faces[i][2] };
return;
}
throw new Exception("5+ sided polygon encountered. Triangulation not yet implemented exceeding quads.");
}
}
//makes each combination of Position/Normal/UV unique so that only one index is needed
public void HarmonizeFaceElements()
{
var model = this;
List<double[]> Vertices = new List<double[]>();
List<double[]> Uvs = new List<double[]>();
List<double[]> Normals = new List<double[]>();
List<int[][]> Faces = new List<int[][]>();
var vertexUvNormalDict = new Dictionary<Int32, Dictionary<Int32, Dictionary<Int32, Int32>>>();
for (var i = 0; i < model.Faces.Count; i++)
{
var newFace = new int[3];
for (var j = 0; j < 3; j++)
{
if (!vertexUvNormalDict.ContainsKey(model.Faces[i][j][0]))
vertexUvNormalDict.Add(model.Faces[i][j][0], new Dictionary<Int32, Dictionary<Int32, Int32>>());
if (!vertexUvNormalDict[model.Faces[i][j][0]].ContainsKey(model.Faces[i][j][1]))
vertexUvNormalDict[model.Faces[i][j][0]].Add(model.Faces[i][j][1], new Dictionary<Int32, Int32>());
if (!vertexUvNormalDict[model.Faces[i][j][0]][model.Faces[i][j][1]].ContainsKey(model.Faces[i][j][2]))
{
vertexUvNormalDict[model.Faces[i][j][0]][model.Faces[i][j][1]].Add(model.Faces[i][j][2], Vertices.Count);
Vertices.Add(model.Vertices[model.Faces[i][j][0]]);
Uvs.Add(model.Uvs[model.Faces[i][j][1]]);
Normals.Add(model.Normals[model.Faces[i][j][2]]);
}
newFace[j] = vertexUvNormalDict[model.Faces[i][j][0]][model.Faces[i][j][1]][model.Faces[i][j][2]];
}
Faces.Add(new int[][] { new int[] { newFace[0], newFace[0], newFace[0] }, new int[] { newFace[1], newFace[1], newFace[1] }, new int[] { newFace[2], newFace[2], newFace[2] } });
}
model.Vertices = Vertices;
model.Uvs = Uvs;
model.Normals = Normals;
model.Faces = Faces;
model.Harmonized = true;
}
}
}