forked from activemodest/DIAC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_process_2.py
474 lines (448 loc) · 23.2 KB
/
data_process_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
import json
import numpy as np
from sklearn.model_selection import train_test_split
import pandas as pd
from tqdm import tqdm # 进度条工具包
from pyhanlp import HanLP # 调入自然语言处理工具包
import pandas as pd
from data_process_2_1 import read_data,save_data,synword_and_samepinyin_data
import os
import jieba
def data_inverse(data,dev=False,pattern=True,mode=1,slicing_portion=[0.3,0.33]):
"""
对样本中的两个问题的顺序,进行翻转,即[q1,q2,label]->[q2,q1,label]
:param data: 需要进行翻转的数据集
:param dev: 判断是否是dev数据集,dev数据集不包含标签
:param pattern: 判断是否是带有pattern的数据
:param mode:1:表示采取使用通配符替换关键词的pattern;
2:表示分别留下不相同的词和相同的词
:param slicing_portion: 切分成train:dev:test的比例
:return: 返回对样本进行翻转后的数据集
"""
if pattern:
if mode == 1:
if dev:
data_df = pd.DataFrame(data, columns=["q11", "q21", "q12", "q22"])
else:
data_df = pd.DataFrame(data, columns=["q11", "q21","q12","q22", "label"])
# print("data_df.iloc[0:2]",data_df.iloc[0:2])
cols = list(data_df)
cols.insert(0, cols.pop(cols.index("q21")))
cols.insert(2, cols.pop(cols.index("q22")))
data_df_inverse = data_df.loc[:, cols]
if dev:
data_df_inverse.columns = ["q11", "q21", "q12", "q22"]
else:
data_df_inverse.columns = ["q11", "q21","q12","q22", "label"]
# print("data_df_inverse.iloc[0:2]", data_df_inverse.iloc[0:2])
if dev:
final_data = pd.concat([data_df, data_df_inverse], axis=0, ignore_index=True)
final_data = np.array(final_data).tolist() # DataFrame->list
return final_data
else:
final_data = pd.concat([data_df,data_df_inverse], axis=0,ignore_index=True)
final_data = np.array(final_data).tolist() # DataFrame->list
train, test_and_dev = train_test_split(final_data, test_size=slicing_portion[0]) # 将数据集划分为train,test,dev
test, dev = train_test_split(test_and_dev, test_size=slicing_portion[0])
else:
if dev:
data_df = pd.DataFrame(data, columns=["q11", "q21", "q12", "q22","q31"])
else:
data_df = pd.DataFrame(data, columns=["q11", "q21", "q12", "q22","q31", "label"])
# print("data_df.iloc[0:2]",data_df.iloc[0:2])
cols = list(data_df)
cols.insert(0, cols.pop(cols.index("q21")))
cols.insert(2, cols.pop(cols.index("q22")))
data_df_inverse = data_df.loc[:, cols]
if dev:
data_df_inverse.columns = ["q11", "q21", "q12", "q22","q31"]
else:
data_df_inverse.columns = ["q11", "q21", "q12", "q22","q31", "label"]
# print("data_df_inverse.iloc[0:2]", data_df_inverse.iloc[0:2])
if dev:
final_data = pd.concat([data_df, data_df_inverse], axis=0, ignore_index=True)
final_data = np.array(final_data).tolist() # DataFrame->list
return final_data
else:
final_data = pd.concat([data_df, data_df_inverse], axis=0, ignore_index=True)
final_data = np.array(final_data).tolist() # DataFrame->list
train, test_and_dev = train_test_split(final_data,test_size=slicing_portion[0]) # 将数据集划分为train,test,dev
test, dev = train_test_split(test_and_dev, test_size=slicing_portion[0])
else:
if dev:
data_df = pd.DataFrame(data, columns=["q1", "q2"])
else:
data_df = pd.DataFrame(data, columns=["q1", "q2", "label"])
# print("data_df.iloc[0:2]",data_df.iloc[0:2])
cols = list(data_df)
cols.insert(0, cols.pop(cols.index("q2")))
data_df_inverse = data_df.loc[:, cols]
if dev:
data_df_inverse.columns = ["q1", "q2"]
else:
data_df_inverse.columns = ["q1", "q2", "label"]
# print("data_df_inverse.iloc[0:2]", data_df_inverse.iloc[0:2])
if dev:
final_data = pd.concat([data_df, data_df_inverse], axis=0, ignore_index=True)
final_data = np.array(final_data).tolist() # DataFrame->list
return final_data
else:
final_data = pd.concat([data_df,data_df_inverse], axis=0,ignore_index=True)
final_data = np.array(final_data).tolist() # DataFrame->list
train, test_and_dev = train_test_split(final_data, test_size=slicing_portion[0]) # 将数据集划分为train,test,dev
test, dev = train_test_split(test_and_dev, test_size=slicing_portion[0])
#返回没有切分的数据集,和经过切分得到的训练集,验证集和测试集
return final_data, train, dev, test
def stay_same_word(data,stopwords):
"""
提取两个句子中相同的词汇,并进行拼接
:param data: 待提取的数据集
:param stopwords: 停用词表
:return: 相同词汇拼成的句子的数据集
"""
new_data = []
for sample in data:
question_1 = sample[0]
question_2 = sample[1]
question_1_seg = list(jieba.cut(question_1.strip()))
question_2_seg = list(jieba.cut(question_2.strip()))
same_word = []
for word_1 in question_1_seg:
if word_1 not in stopwords:
if word_1 in question_2_seg:
same_word.append(word_1)
same_word.append("|")
else:
continue
else:
continue
# if len(same_word) == 0:
# same_word.append("")
same_word_content = "".join(same_word)
new_data.append(same_word_content)
return new_data
def stay_different_word(data,stopwords):
"""
提取两个句子中相同的词汇,并进行拼接
:param data: 待提取的数据集
:param stopwords: 停用词表
:return: 相同词汇拼成的句子的数据集
"""
new_data = []
for sample in data:
question_1 = sample[0].replace(" ","")
question_2 = sample[1].replace(" ","")
question_1_seg = list(jieba.cut(question_1.strip()))
question_2_seg = list(jieba.cut(question_2.strip()))
q1_different_word = []
q2_different_word = []
for word_1 in question_1_seg:
if word_1 not in stopwords:
if word_1 in question_2_seg:
pass
else:
q1_different_word.append(word_1)
q1_different_word.append("|")
# if len(q1_different_word) == 0:
# q1_different_word.append("")
q1_different_word_content = "".join(q1_different_word)
for word_2 in question_2_seg:
# print(word_2)
if word_2 not in stopwords:
if word_2 not in question_1_seg:
q2_different_word.append(word_2)
q2_different_word.append("|")
else:
pass
# if len(q2_different_word) == 0:
# q2_different_word.append("")
q2_different_word_content = "".join(q2_different_word)
new_sample = [q1_different_word_content,q2_different_word_content]
new_data.append(new_sample)
return new_data
def get_data_pattern(data,dev=False,mode=1):
"""
使用通配符替代每个样本[q1,q2,label],中q1和q2的相同的名词
:param data: 要进行处理的数据
:param dev: 处理的数据是否是dev数据集
:param mode: 1:表示采取使用通配符替换关键词的pattern;
2:表示分别留下不相同的词和相同的词
:return:
"""
universal_character = ["A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","Q","R","S","T","U","V","W","X","Y","Z"]
# 通配符,用来替换q1和q2中相同的名词
pattern_data = [] # 没有使用同音字和近义词替换的原始数据
noun_list = ["n", "nb", "nba", "nbc", "nbp", "nf", "ng", "nh", "nhd", "nhm", "ni", "nic", "nis", "nit", "nl", "nm",
"nmc", "nnd", "nnt","nr", "nr1", "nr2", "nrf", "nri", "ns", "nsf", "nt", "ntc", "ntcb", "ntcf", "ntch",
"nth", "nto","nts", "ntu", "nx", "nz", "rr","r","rz"]
# 对样本进行patter的抽取
if mode == 1:
for sample in tqdm(data):
tagging_q1 = HanLP.segment(sample[0])
tagging_q2 = HanLP.segment(sample[1])
word_tagging_q1 = ['%s/%s' %(term.word, term.nature) for term in tagging_q1]
word_q1 = [term.word for term in tagging_q1]
word_tagging_q2 = ['%s/%s' % (term.word, term.nature) for term in tagging_q2]
word_q2 = [term.word for term in tagging_q2]
# print(word_tagging_q1)
# print(word_tagging_q2)
index_equal = [[word_tagging_q1.index(x),word_tagging_q2.index(x)]
for x in word_tagging_q1 if x in word_tagging_q2 if x.split("/")[-1] in noun_list]
# print("index",index_equal)
for i in range(len(index_equal)):
word_q1[index_equal[i][0]] = universal_character[i]
word_q2[index_equal[i][1]] = universal_character[i]
q1 = ''.join(word for word in word_q1)
q2 = ''.join(word for word in word_q2)
if dev:
pattern_data.append([q1,q2])
else:
pattern_data.append([q1,q2,sample[2]])
final_data = []
for i in range(len(data)):
# 如果测试集则没有标签
if dev:
final_data.append([data[i][0], data[i][1], pattern_data[i][0], pattern_data[i][1]])
else:
final_data.append([data[i][0],data[i][1],pattern_data[i][0],pattern_data[i][1],pattern_data[i][2]])
# 数据的格式[q1,q2,q1',q2',label]或者[q1,q2,q1',q2'](dev的情况下)
return final_data, pattern_data
else:
stopword_path = "./stopwords.txt"
otherword_path = "./otherwords.txt"
stopwords = [line.strip() for line in open(stopword_path, encoding='UTF-8').readlines()]
otherword = [line.strip() for line in open(otherword_path, encoding='UTF-8').readlines()]
stopwords += otherword
# stopwords.append(" ")
different_word_data = stay_different_word(data,stopwords)
same_word_data = stay_same_word(data, stopwords)
final_data = []
pattern_data = []
for i in range(len(data)):
# 如果测试集则没有标签
pattern_data.append([different_word_data[i][0], different_word_data[i][1],same_word_data[i]])
if dev:
final_data.append([data[i][0], data[i][1], different_word_data[i][0], different_word_data[i][1],
same_word_data[i]])
else:
final_data.append([data[i][0], data[i][1], different_word_data[i][0], different_word_data[i][1],
same_word_data[i],data[i][2]])
# 数据的格式[q1,q2,q1',q2',label]或者[q1,q2,q1',q2'](dev的情况下)
return final_data, pattern_data
def get_the_final_data():
"""
获得最终版本的数据,数据格式为[q11,q21,q12,q22,label]
:return:
"""
save_data_dir = "./final_data/final_data_2/"
if not os.path.exists(save_data_dir):
os.mkdir(save_data_dir)
cilinpath = "./cilin.txt"
file_path_json = "./dataset/train_set.json"
same_pinyin_file = "./same_pinyin.txt"
chinese_word_freq_file = "./chinese-words.txt"
save_data_synwords_and_samepinyin = save_data_dir + "data_replace_by_synwords_and_samepinyin.txt"
data, true_data, false_data = read_data(file_path_json)
data_eva = synword_and_samepinyin_data(true_data, save_data_synwords_and_samepinyin, cilinpath, same_pinyin_file,
chinese_word_freq_file) # 进行数据增强
new_data = data_eva + data # 包含增强后的数据集
final_data,pattern_data = get_data_pattern(new_data)
all_data, train, dev, test = data_inverse(final_data)
all_data_path_txt = save_data_dir + "train_set.txt"
train_path_txt = save_data_dir + "train.txt"
test_path_txt = save_data_dir + "test.txt"
dev_path_txt = save_data_dir + "dev.txt"
save_data(all_data,all_data_path_txt)
save_data(train,train_path_txt)
save_data(test,test_path_txt)
save_data(dev,dev_path_txt)
# 生成测试集
dev_csv_path = "./dataset/dev_set.csv"
dev_txt_path = save_data_dir + "dev_set.txt"
dev = read_data(dev_csv_path,dev=True)
dev_data, pattern_dev = get_data_pattern(dev,dev=True)
save_data(dev_data, dev_txt_path, columns_num=4)
def get_the_final_data_2(dev_samples=-5000):
"""
获得最终版本的数据,数据格式为[q1,q2,label],并从原始训练集里切5000条数据作为测试集
:return:
"""
save_data_dir = "./final_data/final_data_7/"
if not os.path.exists(save_data_dir):
os.mkdir(save_data_dir)
cilinpath = "./cilin.txt"
file_path_json = "./dataset/train_set.json"
same_pinyin_file = "./same_pinyin.txt"
chinese_word_freq_file = "./chinese-words.txt"
save_data_synwords_and_samepinyin = save_data_dir + "data_replace_by_synwords_and_samepinyin.txt"
data, true_data, false_data = read_data(file_path_json)
data_eva = synword_and_samepinyin_data(true_data, save_data_synwords_and_samepinyin, cilinpath, same_pinyin_file,
chinese_word_freq_file) # 进行数据增强
new_data = data_eva + data # 包含增强后的数据
all_train_data = data_inverse(new_data,pattern=False)
dev_data_from_train = new_data[dev_samples:] # 从原始数据集里切500条数据出来作为验证集
new_data = new_data[0:dev_samples] # 剩下的数据作为训练集
all_data, train, dev, test = data_inverse(new_data,pattern=False)
# dev_data_from_train_1, dev_data_from_train_pattern = get_data_pattern(dev_data_from_train)
all_train_data_path = save_data_dir + "all_train_data.txt"
all_data_path_txt = save_data_dir + "train_set.txt"
train_path_txt = save_data_dir + "train.txt"
test_path_txt = save_data_dir + "test.txt"
dev_path_txt = save_data_dir +"dev.txt"
dev_from_train_path_txt = save_data_dir + "dev_split.txt"
save_data(all_train_data,all_train_data_path,columns_num=3)
save_data(all_data,all_data_path_txt,columns_num=3)
save_data(train,train_path_txt,columns_num=3)
save_data(test,test_path_txt,columns_num=3)
save_data(dev,dev_path_txt,columns_num=3)
save_data(dev_data_from_train, dev_from_train_path_txt,columns_num=3)
# 生成测试集
dev_csv_path = "./dataset/dev_set.csv"
dev_txt_path = save_data_dir +"dev_set.txt"
dev = read_data(dev_csv_path,dev=True)
# dev_data, pattern_dev = get_data_pattern(dev,dev=True)
save_data(dev, dev_txt_path, columns_num=2)
def get_the_final_data_3(dev_samples=-5000):
"""
获得最终版本的数据,数据格式为[q11,q21,q12,q22,label],并从原始训练集里切5000条数据作为测试集,pattern为使用通配符替换相同词汇
:return:
"""
save_data_dir = "./final_data/final_data_10/"
if not os.path.exists(save_data_dir):
os.mkdir(save_data_dir)
cilinpath = "./cilin.txt"
file_path_json = "./dataset/train_set.json"
same_pinyin_file = "./same_pinyin.txt"
chinese_word_freq_file = "./chinese-words.txt"
save_data_synwords_and_samepinyin = save_data_dir + "data_replace_by_synwords_and_samepinyin.txt"
data, true_data, false_data = read_data(file_path_json)
data_eva_true = synword_and_samepinyin_data(true_data, save_data_synwords_and_samepinyin, cilinpath, same_pinyin_file,
chinese_word_freq_file,portition=0.2) # 进行数据增强
data_eva_false = synword_and_samepinyin_data(false_data, save_data_synwords_and_samepinyin, cilinpath,
same_pinyin_file,
chinese_word_freq_file, portition=0.3) # 进行数据增强
new_data = data_eva_true + data_eva_false + data # 包含增强后的数据集
all_train_data,all_train_data_pattern = get_data_pattern(new_data)
all_train_data,all_train_train,all_train_dev,all_train_test = data_inverse(all_train_data)
dev_data_from_train = new_data[dev_samples:] # 从原始数据集里切500条数据出来作为验证集
new_data = new_data[0:dev_samples] # 剩下的数据作为训练集
final_data,pattern_data = get_data_pattern(new_data)
all_data, train, dev, test = data_inverse(final_data)
dev_data_from_train_1,dev_data_from_train_pattern = get_data_pattern(dev_data_from_train)
all_train_data_path = save_data_dir + "all_train_data.txt"
all_data_path_txt = save_data_dir + "train_set.txt"
train_path_txt = save_data_dir + "train.txt"
test_path_txt = save_data_dir + "test.txt"
dev_path_txt = save_data_dir + "dev.txt"
dev_from_train_path_txt = save_data_dir + "dev_split.txt"
save_data(all_train_data, all_train_data_path)
save_data(all_data,all_data_path_txt)
save_data(train,train_path_txt)
save_data(test,test_path_txt)
save_data(dev,dev_path_txt)
save_data(dev_data_from_train_1,dev_from_train_path_txt)
# 生成测试集
dev_csv_path = "./dataset/test_set.csv"
dev_txt_path = save_data_dir + "test_set.txt"
dev = read_data(dev_csv_path,dev=True)
dev_data, pattern_dev = get_data_pattern(dev,dev=True)
save_data(dev_data, dev_txt_path, columns_num=4)
def get_the_final_data_4(dev_samples=-5000):
"""
获得最终版本的数据,数据格式为[q11,q21,q12,q22,q31,label],并从原始训练集里切5000条数据作为测试集
数据增强加到了10000条
q12:q1中与q2不同的词汇
q22:q2中与q1不同的词汇
q31:q1与q2相同的词汇
:return:
"""
save_data_dir = "./final_data/final_data_6/"
if not os.path.exists(save_data_dir):
os.mkdir(save_data_dir)
cilinpath = "./cilin.txt"
file_path_json = "./dataset/train_set.json"
same_pinyin_file = "./same_pinyin.txt"
chinese_word_freq_file = "./chinese-words.txt"
save_data_synwords_and_samepinyin = save_data_dir + "data_replace_by_synwords_and_samepinyin.txt"
data, true_data, false_data = read_data(file_path_json)
data_eva = synword_and_samepinyin_data(true_data, save_data_synwords_and_samepinyin, cilinpath, same_pinyin_file,
chinese_word_freq_file,portition=0.1) # 进行数据增强
new_data = data_eva + data # 包含增强后的数据集
print(len(new_data))
all_train_data,all_train_data_pattern = get_data_pattern(new_data,mode=2)
all_train_data,all_train_train,all_train_dev,all_train_test = data_inverse(all_train_data,mode=2)
print(len(all_train_data))
dev_data_from_train = new_data[dev_samples:] # 从原始数据集里切500条数据出来作为验证集
new_data = new_data[0:dev_samples] # 剩下的数据作为训练集
final_data,pattern_data = get_data_pattern(new_data,mode=2)
all_data, train, dev, test = data_inverse(final_data,mode=2)
dev_data_from_train_1,dev_data_from_train_pattern = get_data_pattern(dev_data_from_train,mode=2)
all_train_data_path = save_data_dir + "all_train_data.txt"
all_data_path_txt = save_data_dir + "train_set.txt"
train_path_txt = save_data_dir + "train.txt"
test_path_txt = save_data_dir + "test.txt"
dev_path_txt = save_data_dir + "dev.txt"
dev_from_train_path_txt = save_data_dir + "dev_split.txt"
save_data(all_train_data,all_train_data_path,columns_num=6)
save_data(all_data,all_data_path_txt,columns_num=6)
save_data(train,train_path_txt,columns_num=6)
save_data(test,test_path_txt,columns_num=6)
save_data(dev,dev_path_txt,columns_num=6)
save_data(dev_data_from_train_1,dev_from_train_path_txt,columns_num=6)
# 生成测试集
dev_csv_path = "./dataset/dev_set.csv"
dev_txt_path = save_data_dir + "dev_set.txt"
dev = read_data(dev_csv_path,dev=True)
dev_data, pattern_dev = get_data_pattern(dev,dev=True,mode=2)
save_data(dev_data, dev_txt_path, columns_num=5)
def get_the_final_data_5(dev_samples=-5000):
"""
获得最终版本的数据,数据格式为[q1,q2,label],并从原始训练集里切5000条数据作为测试集
注意:只包含增强后的数据,不包含原始数据
:return:
"""
save_data_dir = "./final_data/final_data_9/"
if not os.path.exists(save_data_dir):
os.mkdir(save_data_dir)
cilinpath = "./cilin.txt"
file_path_json = "./dataset/train_set.json"
same_pinyin_file = "./same_pinyin.txt"
chinese_word_freq_file = "./chinese-words.txt"
save_data_synwords_and_samepinyin = save_data_dir + "data_replace_by_synwords_and_samepinyin.txt"
data, true_data, false_data = read_data(file_path_json)
data_eva = synword_and_samepinyin_data(data, save_data_synwords_and_samepinyin, cilinpath, same_pinyin_file,
chinese_word_freq_file,portition=1) # 进行数据增强
# new_data = data_eva + data # 包含增强后的数据
new_data = data_eva
all_train_data,all_train_data_1,all_train_data_2,all_train_dat_3 = data_inverse(new_data,pattern=False)
dev_data_from_train = new_data[dev_samples:] # 从原始数据集里切500条数据出来作为验证集
new_data = new_data[0:dev_samples] # 剩下的数据作为训练集
all_data, train, dev, test = data_inverse(new_data,pattern=False)
# dev_data_from_train_1, dev_data_from_train_pattern = get_data_pattern(dev_data_from_train)
all_train_data_path = save_data_dir + "all_train_data.txt"
all_data_path_txt = save_data_dir + "train_set.txt"
train_path_txt = save_data_dir + "train.txt"
test_path_txt = save_data_dir + "test.txt"
dev_path_txt = save_data_dir +"dev.txt"
dev_from_train_path_txt = save_data_dir + "dev_split.txt"
save_data(all_train_data,all_train_data_path,columns_num=3)
save_data(all_data,all_data_path_txt,columns_num=3)
save_data(train,train_path_txt,columns_num=3)
save_data(test,test_path_txt,columns_num=3)
save_data(dev,dev_path_txt,columns_num=3)
save_data(dev_data_from_train, dev_from_train_path_txt,columns_num=3)
# 生成测试集
dev_csv_path = "./dataset/test_set.csv"
dev_txt_path = save_data_dir +"test_set.txt"
dev = read_data(dev_csv_path,dev=True)
save_data_synwords_and_samepinyin_for_dev = save_data_dir + "data_replace_by_synwords_and_samepinyin_for_dev.txt"
data_eva = synword_and_samepinyin_data(dev, save_data_synwords_and_samepinyin_for_dev, cilinpath, same_pinyin_file,
chinese_word_freq_file, columns_num=2,portition=1) # 进行数据增强
# dev_data, pattern_dev = get_data_pattern(dev,dev=True)
save_data(dev, dev_txt_path, columns_num=2)
if __name__ == "__main__":
"""调用以下不同函数,可以获得不同格式的数据集,具体内容可查看每个函数的注释"""
# get_the_final_data_3()
# get_the_final_data_2()
get_the_final_data_4()
# get_the_final_data_5()