-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain.py
341 lines (273 loc) · 12.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
from torch_head import *
from common_head import *
from models import *
from utils import *
from train_utils import *
# from inception.inception_score_tf import get_inception_score
from easydict import EasyDict
def parse():
parser = argparse.ArgumentParser()
"""
Hyper-parameter for Stochastic Gradient Hamiltonian Monte Carlo
"""
parser.add_argument('--sghmc_alpha', default=0.01, type=int, dest='sghmc_alpha', help='number of generators')
parser.add_argument('--g_noise_loss_lambda', default=3e-2, type=float, dest='g_noise_loss_lambda')
parser.add_argument('--d_noise_loss_lambda', default=3e-2, type=float, dest='d_noise_loss_lambda')
parser.add_argument('--d_hist_loss_lambda', default=1.0, type=float, dest='d_hist_loss_lambda')
"""
GAN objectives
NS: original GAN (Non-saturating version)
MM: original GAN (Min-max version)
W: Wasserstein GAN
LS: Least-Square GAN
"""
parser.add_argument('--gan_obj', default='NS', type=str, dest='gan_obj', help='[NS | MM | LS | W]')
"""
Paths
"""
parser.add_argument('--dataset', default='cifar', type=str, dest='dataset',
help='dataset: [cifar10, stl10, imagenet]')
parser.add_argument('--save_dir', default='none', type=str, dest='save_dir', help='save_path')
return parser.parse_args()
def construct_model(args, config):
'''
:param args: Experiment Information
:param config: Neural Network Architecture Configurations
:return:
G: generator structure
D: discriminator structure
'''
D_unbound_output = args.gan_obj in ['W', 'LS']
if config.image_size == 32:
G = multi_generator_32(z_size=config.z_size, out_size=config.channel_size, ngf=config.ngf,
num_gens=config.num_gens).cuda()
D = multi_discriminator_with_history(in_size=config.channel_size, ndf=config.ndf, num_discs=config.num_discs,
unbound_output=D_unbound_output).cuda()
if config.image_size == 48:
G = multi_generator_48(z_size=config.z_size, out_size=config.channel_size, ngf=config.ngf,
num_gens=config.num_gens).cuda()
D = multi_discriminator_48_with_history(in_size=config.channel_size, ndf=config.ndf, num_discs=config.num_discs,
unbound_output=D_unbound_output).cuda()
print('G #parameters: ', count_parameters(G))
print('D #parameters: ', count_parameters(D))
return G, D
def train_net(G, D, args, config):
cudnn.benchmark = True
noise_std = np.sqrt(2 * args.sghmc_alpha)
G_noise_sampler = [get_sghmc_noise(g) for g in G.gs]
D_noise_sampler = get_sghmc_noise(D)
if args.save_dir == 'none':
args.save_dir = './dump/train_{}_{}'.format(args.dataset, args.gan_obj)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
train_loader = torch.utils.data.DataLoader(
dataset=config.get_dataset(),
batch_size=config.batch_size, shuffle=True,
num_workers=config.workers, pin_memory=True)
# setup loss function
criterion_bce = nn.BCELoss().cuda()
criterion_mse = nn.MSELoss().cuda()
if args.gan_obj == 'NS':
phi_1 = lambda dreal, lreal, lfake: criterion_bce(dreal, lreal)
phi_2 = lambda dfake, lreal, lfake: criterion_bce(dfake, lfake)
phi_3 = lambda dfake, lreal, lfake: criterion_bce(dfake, lreal)
elif args.gan_obj == 'MM':
phi_1 = lambda dreal, lreal, lfake: criterion_bce(dreal, lreal)
phi_2 = lambda dfake, lreal, lfake: criterion_bce(dfake, lfake)
phi_3 = lambda dfake, lreal, lfake: - criterion_bce(dfake, lfake)
elif args.gan_obj == 'LS':
phi_1 = lambda dreal, lreal, lfake: criterion_mse(dreal, lreal)
phi_2 = lambda dfake, lreal, lfake: criterion_mse(dfake, lfake)
phi_3 = lambda dfake, lreal, lfake: criterion_mse(dfake, lreal)
elif args.gan_obj == 'W':
phi_1 = lambda dreal, lreal, lfake: - dreal.mean()
phi_2 = lambda dfake, lreal, lfake: dfake.mean()
phi_3 = lambda dfake, lreal, lfake: - dfake.mean()
num_gs = len(G.gs)
num_ds = D.n_ds
# setup optimizer
optimizerD = torch.optim.Adam(D.parameters(), lr=config.base_lr, betas=(config.beta1, 0.999))
optimizerG = torch.optim.Adam(G.parameters(), lr=config.base_lr, betas=(config.beta1, 0.999))
# setup some varibles
batch_time = AverageMeter()
data_time = AverageMeter()
D_losses = AverageMeter()
G_losses = AverageMeter()
G_n_losses = AverageMeter()
fixed_noise = torch.FloatTensor(10 * 10, config.z_size, 1, 1).normal_(0, 1)
with torch.no_grad():
fixed_noise = Variable(fixed_noise.cuda())
end = time.time()
D.train()
G.train()
D_loss_list = []
G_loss_list = []
G_loss_by_hist_list = []
score_list = []
for epoch in range(config.epoches):
bar = ProgressBar()
i = 0
for input, _ in bar(train_loader):
'''
Update D network:
'''
data_time.update(time.time() - end)
batch_size = input.size(0)
g_batch_size = config.g_batch_size
assert g_batch_size >= batch_size
input_var = Variable(input.cuda())
# Train discriminator with real data
label_real = torch.ones(max(batch_size, g_batch_size))
label_real_var = Variable(label_real.cuda())
D_real_result = D(input_var).mean(-1).mean(-1).mean(-1)
D_real_loss = phi_1(D_real_result, label_real_var[:batch_size], None)
# Train discriminator with fake data
label_fake = torch.zeros(g_batch_size)
label_fake_var = Variable(label_fake.cuda())
noise = torch.randn((g_batch_size, config.z_size)).view(-1, config.z_size, 1, 1)
noise_var = Variable(noise.cuda())
G_result = G(noise_var)
D_fake_result = D(G_result).mean(-1).mean(-1).mean(-1)
D_fake_loss = phi_2(D_fake_result, None, label_fake_var)
# Back propagation
D_train_loss = D_real_loss + D_fake_loss
D_losses.update(D_train_loss.item())
D_noise_loss = args.d_noise_loss_lambda * noise_loss(model=D, noise_sampler=D_noise_sampler,
alpha=noise_std)
D_train_loss += D_noise_loss
if args.gan_obj == 'W':
gradient_penalty = calc_gradient_penalty(D, input_var.data, G_result[:batch_size].data)
D_train_loss += gradient_penalty
D.zero_grad()
D_train_loss.backward()
optimizerD.step()
'''
Update G network:
'''
noise = torch.randn((g_batch_size, config.z_size)).view(-1, config.z_size, 1, 1)
noise_var = Variable(noise.cuda())
G_result = G(noise_var)
D_fake_result = D(G_result).mean(-1).mean(-1).mean(-1)
G_train_loss = phi_3(D_fake_result, label_real_var, label_fake_var)
G_losses.update(G_train_loss.item())
G_noise_loss = args.g_noise_loss_lambda * \
sum([noise_loss(model=g, noise_sampler=s, alpha=noise_std) for g, s in zip(G.gs,
G_noise_sampler)])
G_train_loss += G_noise_loss
D_fake_result_hist = D.forward_by_hist(G_result).mean(-1).mean(-1).mean(-1)
G_train_loss_by_hist = phi_3(D_fake_result_hist, label_real_var, label_fake_var)
G_train_loss += G_train_loss_by_hist * args.d_hist_loss_lambda
G_n_losses.update(G_train_loss_by_hist.item())
# Back propagation
D.zero_grad()
G.zero_grad()
G_train_loss.backward()
optimizerG.step()
batch_time.update(time.time() - end)
end = time.time()
if i % 10 == 0:
""" update history discriminators aggregations
"""
# print(F.l1_loss(D.ds.weight.data, D.ds_hist_avg.weight.data))
D.update_hist()
if (i + 1) % config.display == 0:
print_log_2(epoch + 1, config.epoches, i + 1, len(train_loader), config.base_lr,
config.display, batch_time, data_time, D_losses, G_losses, G_n_losses)
batch_time.reset()
data_time.reset()
elif (i + 1) == len(train_loader):
print_log_2(epoch + 1, config.epoches, i + 1, len(train_loader), config.base_lr,
(i + 1) % config.display, batch_time, data_time, D_losses, G_losses, G_n_losses)
batch_time.reset()
data_time.reset()
i += 1
D_loss_list.append(D_losses.avg)
G_loss_list.append(G_losses.avg)
G_loss_by_hist_list.append(G_n_losses.avg)
D_losses.reset()
G_losses.reset()
G_n_losses.reset()
if (epoch + 1) < config.dump_ep:
plot_result(G, fixed_noise, config.image_size, epoch + 1, args.save_dir, is_gray=(config.channel_size == 1))
plot_loss_my(D_loss_list, G_loss_list, G_loss_by_hist_list, epoch + 1, config.epoches, args.save_dir)
if (epoch + 1) % config.dump_ep == 0:
# plt the generate images and loss curve
plot_result(G, fixed_noise, config.image_size, epoch + 1, args.save_dir, is_gray=(config.channel_size == 1))
plot_loss_my(D_loss_list, G_loss_list, G_loss_by_hist_list, epoch + 1, config.epoches, args.save_dir)
# save the D and G.
save_checkpoint({'epoch': epoch, 'state_dict': D.state_dict(), },
os.path.join(args.save_dir, 'D_epoch_{}'.format(epoch)))
save_checkpoint({'epoch': epoch, 'state_dict': G.state_dict(), },
os.path.join(args.save_dir, 'G_epoch_{}'.format(epoch)))
# monitoring gradient behavior & clip if needed
tmp = grad_info(G.parameters())
print('G grad l2-norm: {}, value max: {}'.format(tmp[0], tmp[1]))
tmp = grad_info(D.parameters())
print('D grad l2-norm: {}, value max: {}'.format(tmp[0], tmp[1]))
nn.utils.clip_grad_norm_(parameters=G.parameters(), max_norm=100, norm_type=2)
nn.utils.clip_grad_norm_(parameters=D.parameters(), max_norm=500, norm_type=2)
if (epoch + 1) % config.dump_ep == 0:
batch_size = 100
total_size = 5000
x = []
for i in range(total_size // batch_size):
noise = torch.randn((batch_size, config.z_size)).view(-1, config.z_size, 1, 1)
noise_var = Variable(noise.cuda())
G_result = G(noise_var)
x.append(G_result.detach().cpu().numpy())
x = np.concatenate(x, axis=0)
imgs = x
# m, v = get_inception_score(images=imgs)
m, v = 0
# fid = get_fid_score(images=imgs)
fid = 0
print('Epoch {} Inception Score: mean {:.6f} std {:.6f}'.format(epoch + 1, m, v))
print('Epoch {} FID Score: {:.6f}'.format(epoch + 1, fid))
score_list.append([epoch + 1, m, v, fid])
plot_scores(score_list, args.save_dir)
if __name__ == '__main__':
os.system('mkdir -p logs')
args = parse()
print(args)
config = EasyDict()
"""
Number of Generator/Discriminator Monte-Carlo samples
"""
config.num_gens = 10
config.num_discs = 4
"""
Architecture Hyper-parameters
"""
config.z_size = 100
config.channel_size = 3
config.ngf = 128
config.ndf = 128
"""
Training Hyper-parameters
"""
config.workers = 10
config.display = 800
config.batch_size = 64
config.g_batch_size = 128
config.base_lr = 0.0001
config.beta1 = 0.5
if args.dataset == 'cifar10':
from datasets import get_cifar10
config.get_dataset = get_cifar10
config.epoches = 250
config.image_size = 32
config.dump_ep = 20
if args.dataset == 'stl10':
from datasets import get_stl10
config.get_dataset = get_stl10
config.epoches = 250
config.image_size = 48
config.dump_ep = 10
if args.dataset == 'imagenet':
from datasets import get_imagenet
config.get_dataset = get_imagenet
config.epoches = 50
config.image_size = 32
config.dump_ep = 5
G, D = construct_model(args=args, config=config)
train_net(G, D, args, config)