forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrestricted.tex
3350 lines (3053 loc) · 133 KB
/
restricted.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Restricted Power Series}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we discuss algebras topologically of finite type
over pre-adic topological rings and their homomorphisms. Many of
the results discussed here can be found in the paper \cite{Elkik}.
Other general references for this chapter are \cite{EGA}, \cite{Abbes},
and \cite{Fujiwara-Kato}.
\section{Restricted power series}
\label{section-restricted-power-series}
\noindent
Let $A$ be a topological ring complete with respect to a linear
topology (More on Algebra, Definition
\ref{more-algebra-definition-topological-ring}).
Let $I_\lambda$ be a fundamental system of open ideals.
Let $r \geq 0$ be an integer. In this setting one often
denotes
$$
A\{x_1, \ldots, x_r\} =
\lim_\lambda A/I_\lambda[x_1, \ldots, x_r] =
\lim_\lambda (A[x_1, \ldots, x_r]/I_\lambda A[x_1, \ldots, x_r])
$$
endowed with the limit topology. In other words, this is
the completion of the polynomial ring with respect to the
ideals $I_\lambda$. We can think of elements of $A\{x_1, \ldots, x_r\}$ as
power series
$$
f = \sum\nolimits_{E = (e_1, \ldots, e_r)} a_E x_1^{e_1} \ldots x_r^{e_r}
$$
in $x_1, \ldots, x_r$ with coefficients $a_E \in A$ which tend
to zero in the topology of $A$. In other words, for any $\lambda$
all but a finite number of $a_E$ are in $I_\lambda$.
For this reason elements of $A\{x_1, \ldots, x_r\}$ are sometimes
called {\it restricted power series}.
Sometimes this ring is denoted $A\langle x_1, \ldots, x_r\rangle$;
we will refrain from using this notation.
\begin{remark}[Universal property restricted power series]
\label{remark-universal-property}
\begin{reference}
\cite[Chapter 0, 7.5.3]{EGA}
\end{reference}
Let $A \to C$ be a continuous map of complete linearly topologized rings.
Then any $A$-algebra map $A[x_1, \ldots x_r] \to C$ extends uniquely to a
continuous map $A\{x_1, \ldots, x_r\} \to C$ on restricted power series.
\end{remark}
\begin{remark}
\label{remark-I-adic-completion-and-restricted-power-series}
Let $A$ be a ring and let $I \subset A$ be an ideal. If $A$ is $I$-adically
complete, then the $I$-adic completion $A[x_1, \ldots, x_r]^\wedge$ of
$A[x_1, \ldots, x_r]$ is the restricted power series ring over $A$ as a
ring. However, it is not clear that $A[x_1, \ldots, x_r]^\wedge$ is
$I$-adically complete. We think of the topology on $A\{x_1, \ldots, x_r\}$
as the limit topology (which is always complete) whereas we often think of
the topology on $A[x_1, \ldots, x_r]^\wedge$ as the $I$-adic topology
(not always complete). If $I$ is finitely generated, then
$A\{x_1, \ldots, x_r\} = A[x_1, \ldots, x_r]^\wedge$ as topological
rings, see Algebra, Lemmas \ref{algebra-lemma-hathat} and
\ref{algebra-lemma-hathat-finitely-generated}.
\end{remark}
\section{Algebras topologically of finite type}
\label{section-tft}
\noindent
Here is our definition. This definition is not generally agreed upon.
Many authors impose further conditions, often because they are only
interested in specific types of rings and not the most general case.
\begin{definition}
\label{definition-topologically-finite-type}
Let $A \to B$ be a continuous map of topological rings
(More on Algebra, Definition \ref{more-algebra-definition-topological-ring}).
We say $B$ is {\it topologically of finite type over} $A$ if
there exists an $A$-algebra map $A[x_1, \ldots, x_n] \to B$ whose
image is dense in $B$.
\end{definition}
\noindent
If $A$ is a complete, linearly topologized ring, then the restricted
power series ring $A\{x_1, \ldots, x_r\}$ is topologically of finite
type over $A$. For continuous taut maps of weakly admissible topological rings,
this notion corresponds exactly to morphisms of finite type
between the associated affine formal algebraic spaces.
\begin{lemma}
\label{lemma-topologically-finite-type-finite-type}
Let $S$ be a scheme. Let $\varphi : A \to B$ be a continuous map of
weakly admissible topological rings over $S$. The following
are equivalent
\begin{enumerate}
\item $\text{Spf}(\varphi) : \text{Spf}(B) \to \text{Spf}(A)$
is of finite type,
\item $\varphi$ is taut and $B$ is topologically of finite type over $A$.
\end{enumerate}
\end{lemma}
\begin{proof}
We can use Formal Spaces, Lemma \ref{formal-spaces-lemma-representable-affine}
to relate tautness of $\varphi$ to representability of
$\text{Spf}(\varphi)$. We will use this without further mention below.
Note that $X = \colim \Spec(A/I)$ and $Y = \colim \Spec(B/J(I))$
where $I \subset A$ runs over the weak ideals of definition of $A$
and $J(I)$ is the closure of $IB$ in $B$.
\medskip\noindent
Assume (2).
Choose a ring map $A[x_1, \ldots, x_r] \to B$ whose image is dense.
Then $A[x_1, \ldots, x_r] \to B \to B/J(I)$ has dense image too
which means that it is surjective. Therefore $B/J(I)$ is of
finite type over $A/I$. Let $T \to X$ be a morphism with
$T$ a quasi-compact scheme. Then $T \to X$ factors through
$\Spec(B/I)$ for some $I$ (Formal Spaces, Lemma
\ref{formal-spaces-lemma-factor-through-thickening}).
Then $T \times_X Y = T \times_{\Spec(A/I)} \Spec(B/J(I))$, see proof of
Formal Spaces, Lemma \ref{formal-spaces-lemma-representable-affine}.
Henc $T \times_Y X \to T$ is of finite type as the base change of
the morphism $\Spec(B/J(I)) \to \Spec(A/I)$ which is of finite
type. Thus (1) is true.
\medskip\noindent
Assume (1). Pick any $I \subset A$ as above. Since
$\Spec(A/I) \times_X Y = \Spec(B/J(I))$ we see that $A/I \to B/J(I)$
is of finite type. Choose $b_1, \ldots, b_r \in B$
mapping to generators of $B/J(I)$ over $A/I$. We claim that the image
of the ring map $A[x_1, \ldots, x_r] \to B$ sending $x_i$ to $b_i$
is dense. To prove this, let $I' \subset I$ be a second weak ideal
of definition. Then we have
$$
B/(J(I') + IB) = B/J(I)
$$
because $J(I)$ is the closure of $IB$ and because $J(I')$ is open.
Hence we may apply Algebra, Lemma
\ref{algebra-lemma-surjective-mod-locally-nilpotent}
to see that $A/I'[x_1, \ldots, x_r] \to B/J(I')$ is surjective
Thus (2) is true, concluding the proof.
\end{proof}
\noindent
Let $A$ be a topological ring complete with respect to a linear
topology. Let $I_\lambda$ be a fundamental system of open ideals.
Let $\mathcal{C}$ be the category of systems $(B_\lambda)$ where
\begin{enumerate}
\item $B_\lambda$ is a finite type $A/I_\lambda$-algebra, and
\item $B_\mu \to B_\lambda$ is an $A/I_\mu$-algebra homomorphism
which induces an isomorphism $B_\mu/I_\lambda B_\mu \to B_\lambda$.
\end{enumerate}
Morphisms in $\mathcal{C}$ are given by systems of homomorphisms.
\begin{lemma}
\label{lemma-category-affine-over}
Let $S$ be a scheme. Let $X$ be an affine formal scheme over $S$.
Assume $X$ is McQuillan and let $A$ be the weakly admissible topological
ring associated to $X$. Then there is an anti-equivalence of categories
between
\begin{enumerate}
\item the category $\mathcal{C}$ introduced above, and
\item the category of maps $Y \to X$ of finite type of
affine formal algebraic spaces.
\end{enumerate}
\end{lemma}
\begin{proof}
Let $I_\lambda$ be a fundamental system of weakly admissible ideals
of definition in $A$. Then $Y \times_X \Spec(A/I_\lambda)$ is
affine (Formal Spaces, Definition \ref{formal-spaces-definition-finite-type}
and Lemma \ref{formal-spaces-lemma-affine-representable-by-algebraic-spaces}).
Say $Y \times_X \Spec(A/I_\lambda) = \Spec(B_\lambda)$.
Then $(B_\lambda)$ is an object of $\mathcal{C}$.
Conversely, given a system $(B_\lambda)$ we can set
$Y = \colim \Spec(B_\lambda)$. Some details omitted.
\end{proof}
\begin{remark}
\label{remark-questions}
Let $A$ be a weakly admissible topological ring and let $I_\lambda$
be a fundamental system of weak ideals of definition. Let $X = \text{Spf}(A)$,
in other words, $X$ is a McQuillan affine formal algebraic space.
Let $f : Y \to X$ be a morphism of affine formal algebraic spaces.
In general it will not be true that $Y$ is McQuillan. More specifically,
we can ask the following questions:
\begin{enumerate}
\item Assume that $f : Y \to X$ is a closed immersion. Then
$Y$ is McQuillan and $f$ corresponds to a continuous map
$\varphi : A \to B$ of weakly admissible topological rings
which is taut, whose kernel $K \subset A$ is a closed ideal, and
whose image $\varphi(A)$ is dense in $B$, see Formal Spaces, Lemma
\ref{formal-spaces-lemma-closed-immersion-into-McQuillan}.
What conditions on $A$ guarantee that $B = (A/K)^\wedge$ as in
Formal Spaces, Example
\ref{formal-spaces-example-closed-immersion-from-quotient}?
\item What conditions on $A$ guarantee that closed immersions
$f : Y \to X$ correspond to quotients $A/K$ of $A$ by closed ideals,
in other words, the corresponding continuous map $\varphi$ is surjective
and open?
\item Suppose that $f : Y \to X$ is of finite type. Then we get
$Y = \colim \Spec(B_\lambda)$ where $(B_\lambda)$ is an object of
$\mathcal{C}$ by Lemma \ref{lemma-category-affine-over}.
In this case it is true that there exists a fixed integer $r$ such
that $B_\lambda$ is generated by $r$ elements over $A/I_\lambda$ for
all $\lambda$ (hint: use
Algebra, Lemma \ref{algebra-lemma-surjective-mod-locally-nilpotent}).
However, it is not clear that the projections
$\lim B_\lambda \to B_\lambda$ are surjective, i.e.,
it is not clear that $Y$ is McQuillan.
Is there an example where $Y$ is not McQuillan?
\item Suppose that $f : Y \to X$ is of finite type and $Y$ is McQuillan.
Then $f$ corresponds to a continuous map $\varphi : A \to B$ of weakly
admissible topological rings. In fact $\varphi$ is taut and
$B$ is topologically of finite type over $A$, see
Lemma \ref{lemma-topologically-finite-type-finite-type}.
In other words, $f$ factors as
$$
Y \longrightarrow \mathbf{A}^r_X \longrightarrow X
$$
where the first arrow is a closed immersion of McQuillan affine
formal algebraic spaces. However, then questions (1) and
(2) are in force for $Y \to \mathbf{A}^r_X$.
\end{enumerate}
Below we will answer these questions when
$X$ is countably indexed, i.e., when $A$ has a countable fundamental
system of open ideals. If you have answers to these questions
in greater generality, or if you have counter examples, please email
\href{mailto:stacks.project@gmail.com}{stacks.project@gmail.com}.
\end{remark}
\begin{lemma}
\label{lemma-closed-immersion-into-countably-indexed}
Let $S$ be a scheme. Let $X$ be a countably indexed affine formal algebraic
space over $S$. Let $f : Y \to X$ be a closed immersion of formal algebraic
spaces over $S$. Then $Y$ is a countably indexed affine formal algebraic space
and $f$ corresponds to $A \to A/K$ where $A$ is an object of
$\textit{WAdm}^{count}$ and $K \subset A$ is a closed ideal.
\end{lemma}
\begin{proof}
we can use
Formal Spaces, Lemmas \ref{formal-spaces-lemma-countably-indexed},
\ref{formal-spaces-lemma-property-goes-up-affine-morphism}, and
\ref{formal-spaces-lemma-closed-immersion-into-McQuillan}
to reduce to a morphism $A \to B$ of $\textit{WAdm}^{count}$
which is taut and has dense image.
To finish the proof we apply
Formal Spaces, Lemma \ref{formal-spaces-lemma-dense-image-surjective}.
\end{proof}
\begin{lemma}
\label{lemma-quotient-restricted-power-series}
Let $B \to A$ be an arrow of $\textit{WAdm}^{count}$, see
Formal Spaces, Section \ref{formal-spaces-section-morphisms-rings}.
The following are equivalent
\begin{enumerate}
\item[(a)] $B \to A$ is taut and $B/J \to A/I$ is of finite type for
every weak ideal of definition $J \subset B$ where $I \subset A$ is the
closure of $JA$,
\item[(b)] $B \to A$ is taut and $B/J \to A/I$ is of finite type for
some weak ideal of definition $J \subset B$ with $I \subset A$ the
closure of $JA$,
\item[(c)] $B \to A$ is taut and $A$ is topologically of finite
type over $B$,
\item[(d)] $A$ is isomorphic to a quotient of $B\{x_1, \ldots, x_n\}$
by a closed ideal.
\end{enumerate}
Moreover, these equivalent conditions define a local property,
i.e., they satisfy Formal Spaces, Axioms (\ref{formal-spaces-item-axiom-1}),
(\ref{formal-spaces-item-axiom-2}), (\ref{formal-spaces-item-axiom-3}).
\end{lemma}
\begin{proof}
The implications (a) $\Rightarrow$ (b), (c) $\Rightarrow$ (a),
(d) $\Rightarrow$ (c) are straightforward from the definitions.
Assume (b) holds and let $J \subset B$ and $I \subset A$ be as in (b).
Choose a commutative diagram
$$
\xymatrix{
A \ar[r] & \ldots \ar[r] & A_3 \ar[r] & A_2 \ar[r] & A_1 \\
B \ar[r] \ar[u] & \ldots \ar[r] & B/J_3 \ar[r] \ar[u] &
B/J_2 \ar[r] \ar[u] & B/J_1 \ar[u]
}
$$
such that $A_{n + 1}/J_nA_{n + 1} = A_n$ and such that $A = \lim A_n$ as in
Formal Spaces, Lemma \ref{formal-spaces-lemma-representable-property-rings}.
We may assume $J = J_1$ by replacing $J_1$ by $J_1 + J$ if necessary.
Let $\alpha_1, \ldots, \alpha_n \in A_1$ be generators of $A_1$ over
$B/J_1 = B/J$. Since $A$ is a countable limit of a system with surjective
transition maps, we can find $a_1, \ldots, a_n \in A$ mapping to
$\alpha_1, \ldots, \alpha_n$ in $A_1$. By
Remark \ref{remark-universal-property} we find a continuous map
$B\{x_1, \ldots, x_n\} \to A$ mapping $x_i$ to $a_i$. This map
induces surjections $B/J_m[x_1, \ldots, x_n] \to A_m$ by
Algebra, Lemma \ref{algebra-lemma-surjective-mod-locally-nilpotent}.
For $m \geq 1$ we obtain a short exact sequence
$$
0 \to K_m \to B/J_m[x_1, \ldots, x_n] \to A_m \to 0
$$
The induced transition maps $K_{m + 1} \to K_m$ are surjective because
$A_{m + 1}/J_mA_{m + 1} = A_m$. Hence the inverse limit of these
short exact sequences is exact, see
Algebra, Lemma \ref{algebra-lemma-ML-exact-sequence}.
Since $B\{x_1, \ldots, x_n\} = \lim B/J_m[x_1, \ldots, x_n]$ and $A = \lim A_m$
we conclude that $B\{x_1, \ldots, x_n\} \to A$ is surjective.
As $A$ is complete the kernel is a closed ideal. In this way we see that
(a), (b), (c), and (d) are equivalent.
\medskip\noindent
Let a diagram as in
Formal Spaces, Diagram (\ref{formal-spaces-equation-localize})
be given. By Formal Spaces, Example
\ref{formal-spaces-example-finite-type-from-finite-type-ring-map}
the maps $A \to (A')^\wedge$ and $B \to (B')^\wedge$
satisfy (a), (b), (c), and (d). Moreover, by
Formal Spaces, Lemma \ref{formal-spaces-lemma-representable-property-rings}
in order to prove Formal Spaces, Axioms (\ref{formal-spaces-item-axiom-1})
and (\ref{formal-spaces-item-axiom-2})
we may assume both $A \to B$ and $(B')^\wedge \to (A')^\wedge$
are taut. Now pick a weak ideal of definition $J \subset B$. Let
$J' \subset (B')^\wedge$, $I \subset A$, $I' \subset (A')^\wedge$
be the closure of $J(B')^\wedge$, $JA$, $J(A')^\wedge$.
By what was said above, it suffices to consider the commutative
diagram
$$
\xymatrix{
A/I \ar[r] & (A')^\wedge/I' \\
B/J \ar[r] \ar[u]^{\overline{\varphi}} &
(B')^\wedge/J' \ar[u]_{\overline{\varphi}'}
}
$$
and to show (1) $\overline{\varphi}$ finite type
$\Rightarrow \overline{\varphi}'$
finite type, and (2) if $A \to A'$ is faithfully flat, then
$\overline{\varphi}'$ finite type $\Rightarrow \overline{\varphi}$
finite type. Note that $(B')^\wedge/J' = B'/JB'$ and
$(A')^\wedge/I' = A'/IA'$ by the construction of the topologies on
$(B')^\wedge$ and $(A')^\wedge$. In particular the horizontal
maps in the diagram are \'etale. Part (1) now follows from
Algebra, Lemma \ref{algebra-lemma-compose-finite-type}
and part (2) from
Descent, Lemma \ref{descent-lemma-finite-type-local-source-fppf-algebra}
as the ring map $A/I \to (A')^\wedge/I' = A'/IA'$ is faithfully flat
and \'etale.
\medskip\noindent
We omit the proof of Formal Spaces, Axiom (\ref{formal-spaces-item-axiom-3}).
\end{proof}
\begin{lemma}
\label{lemma-representable-affine-finite-type}
Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of
affine formal algebraic spaces. Assume $Y$ countably indexed.
The following are equivalent
\begin{enumerate}
\item $f$ is locally of finite type,
\item $f$ is of finite type,
\item $f$ corresponds to a morphism $B \to A$ of
$\textit{WAdm}^{count}$ satisfying the equivalent conditions
of Lemma \ref{lemma-quotient-restricted-power-series}.
\end{enumerate}
\end{lemma}
\begin{proof}
Since $X$ and $Y$ are affine it is clear that conditions (1)
and (2) are equivalent. In cases (1) and (2) we see that
$X$ is countably indexed as well by Formal Spaces, Lemma
\ref{formal-spaces-lemma-property-goes-up-affine-morphism}.
Write $X = \text{Spf}(A)$ and $Y = \text{Spf}(B)$
for topological $S$-algebras $A$ and $B$ in $\textit{WAdm}^{count}$, see
Formal Spaces, Lemma \ref{formal-spaces-lemma-countably-indexed}. By
Formal Spaces, Lemma \ref{formal-spaces-lemma-morphism-between-formal-spectra}
we see that $f$ corresponds to a continuous map $B \to A$.
Hence now the result follows from
Lemma \ref{lemma-topologically-finite-type-finite-type}.
\end{proof}
\begin{lemma}
\label{lemma-finite-type-local-property}
Let $P$ be the property of morphisms of $\textit{WAdm}^{count}$ defined by the
equivalent conditions (a), (b), (c), and (d) of
Lemma \ref{lemma-quotient-restricted-power-series}.
Then under the assumptions of
Formal Spaces, Lemma
\ref{formal-spaces-lemma-property-defines-property-morphisms}
the equivalent conditions
(1), (2), and (3) are also equivalent to the condition
\begin{enumerate}
\item[(4)] $f$ is locally of finite type.
\end{enumerate}
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-representable-affine-finite-type}
the condition on morphisms of $\textit{WAdm}^{count}$
translates into morphisms of countably indexed, affine
formal algebraic spaces being of finite type.
Thus the lemma follows from
Formal Spaces,
Lemma \ref{formal-spaces-lemma-finite-type-local}.
\end{proof}
\section{Two categories}
\label{section-two-categories}
\noindent
Let $A$ be a ring and let $I \subset A$ be an ideal.
In this section ${}^\wedge$ will mean $I$-adic completion.
Set $A_n = A/I^n$ so that the $I$-adic completion of $A$ is
$A^\wedge = \lim A_n$. Let $\mathcal{C}$ be the
category
\begin{equation}
\label{equation-C}
\mathcal{C} =
\left\{
\begin{matrix}
\text{systems }(B_n, B_{n + 1} \to B_n)_{n \in \mathbf{N}}\text{ where }\\
B_n\text{ is a finite type }A_n\text{-algebra,}\\
B_{n + 1} \to B_n\text{ is an }A_{n + 1}\text{-algebra map}\\
\text{which induces }B_{n + 1}/I^nB_{n + 1} \cong B_n
\end{matrix}
\right\}
\end{equation}
Morphisms in $\mathcal{C}$ are given by systems of homomorphisms.
Let $\mathcal{C}'$ be the category
\begin{equation}
\label{equation-C-prime}
\mathcal{C}' =
\left\{
\begin{matrix}
A\text{-algebras }B\text{ which are }I\text{-adically complete}\\
\text{such that }B/IB\text{ is of finite type over }A/I
\end{matrix}
\right\}
\end{equation}
Morphisms in $\mathcal{C}'$ are $A$-algebra maps. There is a functor
\begin{equation}
\label{equation-from-complete-to-systems}
\mathcal{C}' \longrightarrow \mathcal{C},\quad
B \longmapsto (B/I^nB)
\end{equation}
Indeed, since $B/IB$ is of finite type over $A/I$ the ring maps
$A_n = A/I^n \to B/I^nB$ are of finite type
(apply Algebra, Lemma \ref{algebra-lemma-NAK}
to a ring map $A/I^n[x_1, \ldots, x_r] \to B/I^nB$
such that the images of $x_1, \ldots, x_r$ generate $B/IB$
over $A/I$).
\begin{lemma}
\label{lemma-topologically-finite-type}
Let $A$ be a ring and let $I \subset A$ be a finitely generated ideal.
The functor
$$
\mathcal{C} \longrightarrow \mathcal{C}',\quad
(B_n) \longmapsto B = \lim B_n
$$
is a quasi-inverse to (\ref{equation-from-complete-to-systems}).
The completions $A[x_1, \ldots, x_r]^\wedge$ are in $\mathcal{C}'$ and
any object of $\mathcal{C}'$ is of the form
$$
B = A[x_1, \ldots, x_r]^\wedge / J
$$
for some ideal $J \subset A[x_1, \ldots, x_r]^\wedge$.
\end{lemma}
\begin{proof}
Let $(B_n)$ be an object of $\mathcal{C}$. By
Algebra, Lemma \ref{algebra-lemma-limit-complete}
we see that $B = \lim B_n$ is $I$-adically complete
and $B/I^nB = B_n$. Hence we see that $B$ is an object of
$\mathcal{C}'$ and that we can recover the object $(B_n)$
by taking the quotients.
Conversely, if $B$ is an object of $\mathcal{C}'$, then
$B = \lim B/I^nB$ by assumption. Thus $B \mapsto (B/I^nB)$ is a quasi-inverse
to the functor of the lemma.
\medskip\noindent
Since $A[x_1, \ldots, x_r]^\wedge = \lim A_n[x_1, \ldots, x_r]$
it is an object of $\mathcal{C}'$ by the first statement of the lemma.
Finally, let $B$ be an object of $\mathcal{C}'$. Choose
$b_1, \ldots, b_r \in B$ whose images in $B/IB$ generate
$B/IB$ as an algebra over $A/I$. Since $B$ is $I$-adically
complete, the $A$-algebra map $A[x_1, \ldots, x_r] \to B$, $x_i \mapsto b_i$
extends to an $A$-algebra map $A[x_1, \ldots, x_r]^\wedge \to B$.
To finish the proof we have to show this map is surjective
which follows from Algebra, Lemma \ref{algebra-lemma-completion-generalities}
as our map $A[x_1, \ldots, x_r] \to B$ is surjective modulo $I$
and as $B = B^\wedge$.
\end{proof}
\noindent
We warn the reader that, in case $A$ is not Noetherian, the
quotient of an object of $\mathcal{C}'$ may not be an object
of $\mathcal{C}'$. See Examples, Lemma
\ref{examples-lemma-noncomplete-quotient}.
Next we show this does not happen when $A$ is Noetherian.
\begin{lemma}
\label{lemma-topologically-finite-type-Noetherian}
\begin{reference}
\cite[Proposition 7.5.5]{EGA1}
\end{reference}
Let $A$ be a Noetherian ring and let $I \subset A$ be an ideal. Then
\begin{enumerate}
\item every object of the category $\mathcal{C}'$, in particular the
completion $A[x_1, \ldots, x_r]^\wedge$, is Noetherian,
\item if $B$ is an object of $\mathcal{C}'$ and $J \subset B$ is an
ideal, then $B/J$ is an object of $\mathcal{C}'$.
\end{enumerate}
\end{lemma}
\begin{proof}
To see (1) by Lemma \ref{lemma-topologically-finite-type}
we reduce to the case of the completion of the polynomial ring.
This case follows from
Algebra, Lemma \ref{algebra-lemma-completion-Noetherian-Noetherian}
as $A[x_1, \ldots, x_r]$ is Noetherian
(Algebra, Lemma \ref{algebra-lemma-Noetherian-permanence}).
Part (2) follows from Algebra, Lemma \ref{algebra-lemma-completion-tensor}
which tells us that ever finite $B$-module is
$IB$-adically complete.
\end{proof}
\begin{remark}[Base change]
\label{remark-base-change}
Let $\varphi : A_1 \to A_2$ be a ring map and let
$I_i \subset A_i$ be ideals such that $\varphi(I_1^c) \subset I_2$
for some $c \geq 1$. This induces ring maps
$A_{1, cn} = A_1/I_1^{cn} \to A_2/I_2^n = A_{2, n}$ for all $n \geq 1$.
Let $\mathcal{C}_i$ be the category (\ref{equation-C}) for $(A_i, I_i)$.
There is a base change functor
\begin{equation}
\label{equation-base-change-systems}
\mathcal{C}_1 \longrightarrow \mathcal{C}_2,\quad
(B_n) \longmapsto (B_{cn} \otimes_{A_{1, cn}} A_{2, n})
\end{equation}
Let $\mathcal{C}_i'$ be the category (\ref{equation-C-prime}) for $(A_i, I_i)$.
If $I_2$ is finitely generated, then there is a base change functor
\begin{equation}
\label{equation-base-change-complete}
\mathcal{C}_1' \longrightarrow \mathcal{C}_2',\quad
B \longmapsto (B \otimes_{A_1} A_2)^\wedge
\end{equation}
because in this case the completion is complete
(Algebra, Lemma \ref{algebra-lemma-hathat-finitely-generated}).
If both $I_1$ and $I_2$ are finitely generated, then
the two base change functors agree via the functors
(\ref{equation-from-complete-to-systems})
which are equivalences by Lemma \ref{lemma-topologically-finite-type}.
\end{remark}
\begin{remark}[Base change by closed immersion]
\label{remark-take-bar}
Let $A$ be a Noetherian ring and $I \subset A$ an ideal.
Let $\mathfrak a \subset A$ be an ideal. Denote $\bar A = A/\mathfrak a$.
Let $\bar I \subset \bar A$ be an ideal such that
$I^c \bar A \subset \bar I$ and $\bar I^d \subset I\bar A$
for some $c, d \geq 1$. In this case the base change functor
(\ref{equation-base-change-complete}) for $(A, I)$ to $(\bar A, \bar I)$
is given by $B \mapsto \bar B = B/\mathfrak aB$. Namely, we have
\begin{equation}
\label{equation-base-change-to-closed}
\bar B = (B \otimes_A \bar A)^\wedge = (B/\mathfrak a B)^\wedge =
B/\mathfrak a B
\end{equation}
the last equality because any finite $B$-module is $I$-adically complete by
Algebra, Lemma \ref{algebra-lemma-completion-tensor}
and if annihilated by $\mathfrak a$ also $\bar I$-adically complete by
Algebra, Lemma \ref{algebra-lemma-change-ideal-completion}.
\end{remark}
\section{A naive cotangent complex}
\label{section-naive-cotangent-complex}
\noindent
Let $A$ be a Noetherian ring and let $I \subset A$ be a ideal.
Let $B$ be an $A$-algebra which is $I$-adically complete such
that $A/I \to B/IB$ is of finite type, i.e., an object of
(\ref{equation-C-prime}).
By Lemma \ref{lemma-topologically-finite-type-Noetherian} we can write
$$
B = A[x_1, \ldots, x_r]^\wedge / J
$$
for some finitely generated ideal $J$. For a choice of presentation as
above we define the naive cotangent complex in this setting by the formula
\begin{equation}
\label{equation-NL}
\NL^\wedge_{B/A} = (J/J^2 \longrightarrow \bigoplus B\text{d}x_i)
\end{equation}
with terms sitting in degrees $-1$ and $0$
where the map sends the residue class of $g \in J$ to the differential
$\text{d}g = \sum (\partial g/\partial x_i) \text{d}x_i$. Here
the partial derivative is taken by thinking of $g$ as a power series.
The following lemma shows that $\NL^\wedge_{B/A}$ is well defined
in $D(B)$, i.e., independent of the chosen presentation, although this
could be shown directly by comparing presentations as in
Algebra, Section \ref{algebra-section-netherlander}.
\begin{lemma}
\label{lemma-NL-is-limit}
Let $A$ be a Noetherian ring and let $I \subset A$ be a ideal.
Let $B$ be an object of (\ref{equation-C-prime}). Then
$\NL^\wedge_{B/A} = R\lim \NL_{B_n/A_n}$ in $D(B)$.
\end{lemma}
\begin{proof}
In fact, the presentation $B = A[x_1, \ldots, x_r]^\wedge / J$
defines presentations
$$
B_n = B/I^nB = A_n[x_1, \ldots, x_r]/J_n
$$
where
$$
J_n = JA_n[x_1, \ldots, x_r] =
J/(J \cap I^nA[x_1, \ldots, x_r]^\wedge)
$$
By Artin-Rees (Algebra, Lemma \ref{algebra-lemma-Artin-Rees})
in the Noetherian ring $A[x_1, \ldots, x_r]^\wedge$
(Lemma \ref{lemma-topologically-finite-type-Noetherian})
we see that we have canonical surjections
$$
J/I^nJ \to J_n \to J/I^{n - c}J,\quad n \geq c
$$
for some $c \geq 0$.
It follows that $\lim J_n/J_n^2 = J/J^2$ as any finite
$A[x_1, \ldots, x_r]^\wedge$-module is $I$-adically complete
(Algebra, Lemma \ref{algebra-lemma-completion-tensor}).
Thus
$$
\NL^\wedge_{B/A} =
\lim (J_n/J_n^2 \longrightarrow \bigoplus B_n \text{d}x_i)
$$
(termwise limit)
and the transition maps in the system are termwise surjective.
The two term complex $J_n/J_n^2 \longrightarrow \bigoplus B_n \text{d}x_i$
represents $\NL_{B_n/A_n}$ by
Algebra, Section \ref{algebra-section-netherlander}.
It follows that $\NL^\wedge_{B/A}$ represents
$R\lim \NL_{B_n/A_n}$ in the derived category by
More on Algebra, Lemma \ref{more-algebra-lemma-compute-Rlim-modules}.
\end{proof}
\begin{lemma}
\label{lemma-exact-sequence-NL}
Let $A$ be a Noetherian ring and let $I \subset A$ be a ideal.
Let $B \to C$ be morphism of (\ref{equation-C-prime}). Then
there is an exact sequence
$$
\xymatrix{
C \otimes_B H^0(\NL^\wedge_{B/A}) \ar[r] &
H^0(\NL^\wedge_{C/A}) \ar[r] &
H^0(\NL^\wedge_{C/B}) \ar[r] & 0 \\
H^{-1}(\NL^\wedge_{B/A} \otimes_B C) \ar[r] &
H^{-1}(\NL^\wedge_{C/A}) \ar[r] &
H^{-1}(\NL^\wedge_{C/B}) \ar[llu]
}
$$
\end{lemma}
\begin{proof}
Choose a presentation $B = A[x_1, \ldots, x_r]^\wedge/J$.
Note that $(B, IB)$ is a pair consisting of a Noetherian ring
and an ideal, and $C$ is in the corresponding category (\ref{equation-C-prime})
for this pair. Hence we can choose a presentation
$C = B[y_1, \ldots, y_s]^\wedge/J'$. Combinging these presentations
gives a presentation
$$
C = A[x_1, \ldots, x_r, y_1, \ldots, y_s]^\wedge/K
$$
Then the reader verifies that we obtain a commutative diagram
$$
\xymatrix{
0 \ar[r] &
\bigoplus C \text{d}x_i \ar[r] &
\bigoplus C \text{d}x_i \oplus \bigoplus C \text{d}y_j \ar[r] &
\bigoplus C \text{d}y_j \ar[r] &
0 \\
&
J/J^2 \otimes_B C \ar[r] \ar[u] &
K/K^2 \ar[r] \ar[u] &
J'/(J')^2 \ar[r] \ar[u] &
0
}
$$
with exact rows. Note that the vertical arrow on the left hand side
is the tensor product of the arrow defining $\NL^\wedge_{B/A}$ with
$\text{id}_C$. The lemma follows by applying the snake lemma
(Algebra, Lemma \ref{algebra-lemma-snake}).
\end{proof}
\begin{lemma}
\label{lemma-transitive-lci-at-end}
With assumptions as in Lemma \ref{lemma-exact-sequence-NL}
assume that $B/I^nB \to C/I^nC$ is a local complete intersection
homomorphism for all $n$. Then
$H^{-1}(\NL^\wedge_{B/A} \otimes_B C) \to H^{-1}(\NL^\wedge_{C/A})$
is injective.
\end{lemma}
\begin{proof}
By More on Algebra, Lemma \ref{more-algebra-lemma-transitive-lci-at-end}
we see that this holds for the map between naive cotangent complexes
of the situation modulo $I^n$ for all $n$. In other words, we obtain
a distinguished triangle in $D(C/I^nC)$ for every $n$. Using
Lemma \ref{lemma-NL-is-limit}
this implies the lemma; details omitted.
\end{proof}
\noindent
Maps in the derived category out of a complex such as (\ref{equation-NL})
are easy to understand by the result of the following lemma.
\begin{lemma}
\label{lemma-map-out-of-almost-free}
Let $R$ be a ring. Let $M^\bullet$ be a complex of modules over $R$
with $M^i = 0$ for $i > 0$ and $M^0$ a projective $R$-module.
Let $K^\bullet$ be a second complex.
\begin{enumerate}
\item If $K^i = 0$ for $i \leq -2$, then
$\Hom_{D(R)}(M^\bullet, K^\bullet) = \Hom_{K(R)}(M^\bullet, K^\bullet)$,
\item If $K^i = 0$ for $i \leq -3$ and
$\alpha \in \Hom_{D(R)}(M^\bullet, K^\bullet)$ composed with
$K^\bullet \to K^{-2}[2]$ comes from an $R$-module map
$a : M^{-2} \to K^{-2}$ with $a \circ d_M^{-3} = 0$, then
$\alpha$ can be represented by a map of complexes
$a^\bullet : M^\bullet \to K^\bullet$ with $a^{-2} = a$.
\item In (2) for any second map of complexes
$(a')^\bullet : M^\bullet \to K^\bullet$
representing $\alpha$ with $a = (a')^{-2}$
there exist $h' : M^0 \to K^{-1}$ and
$h : M^{-1} \to K^{-2}$ such that
$$
h \circ d_M^{-2} = 0, \quad
(a')^{-1} = a^{-1} + d_K^{-2} \circ h + h' \circ d_M^{-1},\quad
(a')^0 = a^0 + d_K^{-1} \circ h'
$$
\end{enumerate}
\end{lemma}
\begin{proof}
Set $F^0 = M^0$.
Choose a free $R$-module $F^{-1}$ and a surjection $F^{-1} \to M^{-1}$.
Choose a free $R$-module $F^{-2}$ and a surjection
$F^{-2} \to M^{-2} \times_{M^{-1}} F^{-1}$. Continuing in this
way we obtain a quasi-isomorphism $p^\bullet : F^\bullet \to M^\bullet$
which is termwise surjective and with $F^i$ free for all $i$.
\medskip\noindent
Proof of (1). By
Derived Categories, Lemma \ref{derived-lemma-morphisms-from-projective-complex}
we have
$$
\Hom_{D(R)}(M^\bullet, K^\bullet) = \Hom_{K(R)}(F^\bullet, K^\bullet)
$$
If $K^i = 0$ for $i \leq -2$, then any morphism of complexes
$F^\bullet \to K^\bullet$ factors through $p^\bullet$. Similarly, any
homotopy $\{h^i : F^i \to K^{i - 1}\}$ factors through $p^\bullet$.
Thus (1) holds.
\medskip\noindent
Proof of (2). Choose $b^\bullet : F^\bullet \to K^\bullet$ representing
$\alpha$. The composition of $\alpha$ with $K^\bullet \to K^{-2}[2]$ is
represented by $b^{-2} : F^{-2} \to K^{-2}$. As this is homotopic to
$a \circ p^{-2} : F^{-2} \to M^{-2} \to K^{-2}$, there is a map
$h : F^{-1} \to K^{-2}$ such that $b^{-2} = a \circ p^{-2} + h \circ d_F^{-2}$.
Adjusting $b^\bullet$ by $h$ viewed as a homotopy from $F^\bullet$
to $K^\bullet$, we find that $b^{-2} = a \circ p^{-2}$. Hence $b^{-2}$
factors through $p^{-2}$. Since $F^0 = M^0$ the kernel of $p^{-2}$
surjects onto the kernel of $p^{-1}$ (for example because the kernel
of $p^\bullet$ is an acyclic complex or by a diagram chase). Hence $b^{-1}$
necessarily factors through $p^{-1}$ as well and we see that (2)
holds for these factorizations and $a^0 = b^0$.
\medskip\noindent
Proof of (3) is omitted. Hint: There is a homotopy between
$a^\bullet \circ p^\bullet$ and $(a')^\bullet \circ p^\bullet$
and we argue as before that this homotopy factors through $p^\bullet$.
\end{proof}
\begin{lemma}
\label{lemma-zero-in-derived}
Let $R$ be a ring. Let $M^\bullet$ be a two term complex $M^{-1} \to M^0$
over $R$. If $\varphi, \psi \in \text{End}_{D(R)}(M^\bullet)$
are zero on $H^i(M^\bullet)$, then $\varphi \circ \psi = 0$.
\end{lemma}
\begin{proof}
Apply
Derived Categories, Lemma \ref{derived-lemma-trick-vanishing-composition}
to see that $\varphi \circ \psi$ factors through $\tau_{\leq -2}M^\bullet = 0$.
\end{proof}
\section{Rig-\'etale homomorphisms}
\label{section-rig-etale}
\noindent
In this and some of the later sections we will study ring maps as
in Lemma \ref{lemma-equivalent-with-artin}. Condition
(\ref{item-condition-artin}) is one of the conditions used in
\cite{ArtinII} to define modifications. Ring maps like this are sometimes
called rig-\'etale or rigid-\'etale ring maps in the literature. These and
the analogously defined rig-smooth ring maps were studied
in \cite{Elkik}. A detailed exposition can also be found in
\cite{Abbes}. Our main goal will be to show that rig-\'etale
ring maps are completions of finite type algebras, a result
very similar to results found in Elkik's paper \cite{Elkik}.
\begin{lemma}
\label{lemma-equivalent-with-artin}
Let $A$ be a Noetherian ring and let $I \subset A$ be an ideal.
Let $B$ be an object of (\ref{equation-C-prime}). The following are equivalent
\begin{enumerate}
\item
\label{item-zero-on-NL}
there exists a $c \geq 0$ such that multiplication by $a$
on $\NL^\wedge_{B/A}$ is zero in $D(B)$ for all $a \in I^c$,
\item
\label{item-zero-on-cohomology-NL}
there exits a $c \geq 0$ such that $H^i(\NL^\wedge_{B/A})$, $i = -1, 0$ is
annihilated by $I^c$,
\item
\label{item-zero-on-cohomology-NL-truncations}
there exists a $c \geq 0$ such that $H^i(\NL_{B_n/A_n})$, $i = -1, 0$ is
annihlated by $I^c$ for all $n \geq 1$,
\item
\label{item-condition-artin}
$B = A[x_1, \ldots, x_r]^\wedge/J$ and
for every $a \in I$ there exists a $c \geq 0$ such that
\begin{enumerate}
\item $a^c$ annihilates $H^0(\NL^\wedge_{B/A})$, and
\item there exist $f_1, \ldots, f_r \in J$ such that
$a^c J \subset (f_1, \ldots, f_r) + J^2$.
\end{enumerate}
\end{enumerate}
\end{lemma}
\begin{proof}
The equivalence of (1) and (2) follows from
Lemma \ref{lemma-zero-in-derived}.
The equivalence of (1) $+$ (2) and (3) follows from
Lemma \ref{lemma-NL-is-limit}. Some details omitted.
\medskip\noindent
Assume the equivalent conditions (1), (2), (3) holds and let
$B = A[x_1, \ldots, x_r]^\wedge/J$ be a presentation
(see Lemma \ref{lemma-topologically-finite-type}). Let $a \in I$.
Let $c$ be such that multplication by $a^c$ is zero on $\NL^\wedge_{B/A}$
which exists by (1). By Lemma \ref{lemma-map-out-of-almost-free}
there exists a map $\alpha : \bigoplus B\text{d}x_i \to J/J^2$ such that
$\text{d} \circ \alpha$ and $\alpha \circ \text{d}$ are both
multiplication by $a^c$. Let $f_i \in J$ be an element whose
class modulo $J^2$ is equal to $\alpha(\text{d}x_i)$.
Then we see that (\ref{item-condition-artin})(a), (b) hold.
\medskip\noindent
Assume (\ref{item-condition-artin}) holds. Say $I = (a_1, \ldots, a_t)$.
Let $c_i \geq 0$ be the integer such that (\ref{item-condition-artin})(a), (b)
hold for $a_i^{c_i}$. Then we see that $I^{\sum c_i}$ annihilates
$H^0(\NL^\wedge_{B/A})$. Let $f_{i, 1}, \ldots, f_{i, r} \in J$
be as in (\ref{item-condition-artin})(b) for $a_i$.
Consider the composition
$$
B^{\oplus r} \to J/J^2 \to \bigoplus B\text{d}x_i
$$
where the $j$th basis vector is mapped to the class of $f_{i, j}$ in $J/J^2$.
By (\ref{item-condition-artin})(a) and (b) the cokernel of the composition
is annihilated by $a_i^{2c_i}$. Thus this map is surjective after inverting
$a_i^{c_i}$, and hence an isomorphism (Algebra, Lemma \ref{algebra-lemma-fun}).
Thus the kernel of $B^{\oplus r} \to \bigoplus B\text{d}x_i$ is
$a_i$-power torsion, and hence
$H^{-1}(\NL^\wedge_{B/A}) = \Ker(J/J^2 \to \bigoplus B\text{d}x_i)$
is $a_i$-power torsion. Since $B$ is Noetherian
(Lemma \ref{lemma-topologically-finite-type-Noetherian}),
all modules including $H^{-1}(\NL^\wedge_{B/A})$ are finite.
Thus $a_i^{d_i}$ annihilates $H^{-1}(\NL^\wedge_{B/A})$ for some $d_i \geq 0$.
It follows that $I^{\sum d_i}$ annihilates $H^{-1}(\NL^\wedge_{B/A})$
and we see that (2) holds.
\end{proof}
\begin{lemma}
\label{lemma-rig-etale}
Let $A$ be a Noetherian ring and let $I$ be an ideal.
Let $B$ be a finite type $A$-algebra.
\begin{enumerate}
\item If $\Spec(B) \to \Spec(A)$ is \'etale over $\Spec(A) \setminus V(I)$,
then $B^\wedge$ satisfies the equivalent conditions of
Lemma \ref{lemma-equivalent-with-artin}.
\item If $B^\wedge$ satisfies the equivalent conditions of
Lemma \ref{lemma-equivalent-with-artin},
then there exists $g \in 1 + IB$ such that $\Spec(B_g)$ is \'etale
over $\Spec(A) \setminus V(I)$.
\end{enumerate}
\end{lemma}
\begin{proof}
Assume $B^\wedge$ satisfies the equivalent conditions of
Lemma \ref{lemma-equivalent-with-artin}.
The naive cotangent complex $\NL_{B/A}$ is a complex of finite type
$B$-modules and hence $H^{-1}$ and $H^0$ are finite $B$-modules.
Completion is an exact functor on finite $B$-modules (Algebra,
Lemma \ref{algebra-lemma-completion-flat}) and $\NL^\wedge_{B^\wedge/A}$
is the completion of the complex $\NL_{B/A}$ (this is easy to see
by choosing presentations).
Hence the assumption implies there exists a $c \geq 0$ such that
$H^{-1}/I^nH^{-1}$ and $H^0/I^nH^0$ are annihilated by $I^c$
for all $n$. By Nakayama's lemma (Algebra, Lemma \ref{algebra-lemma-NAK})
this means that $I^cH^{-1}$ and $I^cH^0$ are annihilated by an element
of the form $g = 1 + x$ with $x \in IB$. After inverting $g$
(which does not change the quotients $B/I^nB$)
we see that $\NL_{B/A}$ has cohomology annihilated by $I^c$. Thus
$A \to B$ is \'etale at any prime of $B$ not lying over $V(I)$
by the definition of \'etale ring maps, see
Algebra, Definition \ref{algebra-definition-etale}.
\medskip\noindent
Conversely, assume that $\Spec(B) \to \Spec(A)$ is \'etale over
$\Spec(A) \setminus V(I)$. Then for every $a \in I$ there exists
a $c \geq 0$ such that multiplication by $a^c$ is zero $\NL_{B/A}$.
Since $\NL^\wedge_{B^\wedge/A}$ is the derived completion of
$\NL_{B/A}$ (see Lemma \ref{lemma-NL-is-limit}) it follows that
$B^\wedge$ satisfies the equivalent conditions of
Lemma \ref{lemma-equivalent-with-artin}.
\end{proof}
\begin{lemma}
\label{lemma-zero-after-modding-out}
Assume the map $(A_1, I_1) \to (A_2, I_2)$ is as in
Remark \ref{remark-base-change} with $A_1$ and $A_2$ Noetherian.
Let $B_1$ be in (\ref{equation-C-prime}) for $(A_1, I_1)$.
Let $B_2$ be the base change of $B_1$.
If multiplication by $f_1 \in B_1$ on $\NL^\wedge_{B_1/A_1}$
is zero in $D(B_1)$, then multiplication by
the image $f_2 \in B_2$ on $\NL^\wedge_{B_2/A_2}$ is zero
in $D(B_2)$.
\end{lemma}
\begin{proof}
Choose a presentation $B_1 = A_1[x_1, \ldots, x_r]^\wedge/J_1$.
Since
$A_2/I_2^n[x_1, \ldots, x_r] =
A_1/I_1^{cn}[x_1, \ldots, x_r] \otimes_{A_1/I_1^{cn}} A_2/I_2^n$
we have
$$
A_2[x_1, \ldots, x_r]^\wedge =
(A_1[x_1, \ldots, x_r]^\wedge \otimes_{A_1} A_2)^\wedge
$$
where we use $I_2$-adic completion on both sides (but of course
$I_1$-adic completion for $A_1[x_1, \ldots, x_r]^\wedge$).
Set $J_2 = J_1 A_2[x_1, \ldots, x_r]^\wedge$. Arguing similarly
we get the presentation
\begin{align*}
B_2
& =
(B_1 \otimes_{A_1} A_2)^\wedge \\
& =
\lim \frac{A_1/I_1^{cn}[x_1, \ldots, x_r]}{J_1(A_1/I_1^{cn}[x_1, \ldots, x_r])}
\otimes_{A_1/I_1^{cn}} A_2/I_2^n \\
& =
\lim \frac{A_2/I_2^n[x_1, \ldots, x_r]}{J_2(A_2/I_2^n[x_1, \ldots, x_r])} \\
& =
A_2[x_1, \ldots, x_r]^\wedge/J_2
\end{align*}