-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpath2.py
234 lines (195 loc) · 6.81 KB
/
path2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
import folium
import math
def haversine(lat1, lon1, lat2, lon2):
# distance between latitudes
# and longitudes
dLat = (lat2 - lat1) * math.pi / 180.0
dLon = (lon2 - lon1) * math.pi / 180.0
# convert to radians
lat1 = (lat1) * math.pi / 180.0
lat2 = (lat2) * math.pi / 180.0
# apply formulae
a = (pow(math.sin(dLat / 2), 2) +
pow(math.sin(dLon / 2), 2) *
math.cos(lat1) * math.cos(lat2));
rad = 6371
c = 2 * math.asin(math.sqrt(a))
return rad * c
#a b c d e f g h
lat = [39.7902699, 39.7893960, 39.7897752, 39.7904247, 39.7882418, 39.7876153, 39.7911107, 39.7902369]
lon = [30.4830909, 30.4917812, 30.4942060, 30.4982183, 30.5007720, 30.4958797, 30.5028534, 30.5054712]
alti =[50, 48, 55, 60, 50, 51, 48.2, 49 ]
ba=haversine(lat[0], lon[0],lat[1], lon[1])
ca=haversine(lat[0], lon[0],lat[2], lon[2])
da=haversine(lat[0], lon[0],lat[3], lon[3])
cb=haversine(lat[1], lon[1],lat[2], lon[2])
fb=haversine(lat[1], lon[1],lat[4], lon[4])
fc=haversine(lat[2], lon[2],lat[4], lon[4])
dc=haversine(lat[2], lon[2],lat[3], lon[3])
ed=haversine(lat[3], lon[3],lat[5], lon[5])
gd=haversine(lat[3], lon[3],lat[6], lon[6])
ge=haversine(lat[5], lon[5],lat[6], lon[6])
he=haversine(lat[5], lon[5],lat[7], lon[7])
ef=haversine(lat[4], lon[4],lat[5], lon[5])
hf=haversine(lat[4], lon[4],lat[7], lon[7])
hg=haversine(lat[6], lon[6],lat[7], lon[7])
gh=haversine(lat[7], lon[7],lat[6], lon[6])
print("ba " + str(ba))
graph = {
'a' : {'b':ba, 'c':ca, 'd':da},
'b' : {'c':cb, 'f':fb},
'c' : {'f':fc, 'd':dc},
'd' : {'e':ed, 'g':gd},
'e' : {'g':ge, 'h':he},
'f' : {'e':ef, 'h':hf},
'g' : {'h':hg},
'h' : {'g':gh}
}
alt = [33,34,32,37,29,40,34,35]
graph2 = {
'a' : {'b':alt[1]-alt[0], 'c':alt[2]-alt[0], 'd':alt[3]-alt[0]},
'b' : {'c':alt[2]-alt[1], 'f':alt[4]-alt[1]},
'c' : {'f':alt[4]-alt[2], 'd':alt[3]-alt[2]},
'd' : {'e':alt[5]-alt[3], 'g':alt[6]-alt[3]},
'e' : {'g':alt[6]-alt[5], 'h':alt[7]-alt[5]},
'f' : {'e':alt[5]-alt[4], 'h':alt[7]-alt[4]},
'g' : {'h':alt[7]-alt[6]},
'h' : {'g':alt[6]-alt[7]}
}
def dijkstra(graph,start,goal):
shortest_distance = {}
track_predecessor = {}
unseenNodes = graph
infinity = 999999
track_path = []
for node in unseenNodes:
shortest_distance[node] = infinity
shortest_distance[start] = 0
while unseenNodes:
min_distance_node = None
for node in unseenNodes:
if min_distance_node is None:
min_distance_node = node
elif shortest_distance[node] < shortest_distance[min_distance_node]:
min_distance_node = node
path_options = graph[min_distance_node].items()
for child_node, weight in path_options:
if weight + shortest_distance[min_distance_node] < shortest_distance[child_node]:
shortest_distance[child_node] = weight + shortest_distance[min_distance_node]
track_predecessor[child_node] = min_distance_node
unseenNodes.pop(min_distance_node)
currentNode = goal
while currentNode != start:
try:
track_path.insert(0, currentNode)
currentNode = track_predecessor[currentNode]
except KeyError:
print("path is not reachable")
break
track_path.insert(0,start)
if shortest_distance[goal] != infinity:
print("shortest_distance is " + str(shortest_distance[goal]))
print("optimal path is " + str(track_path))
return track_path
track_path =dijkstra(graph,'a','h')
m = folium.Map(location = [lat[0], lon[0]], tiles = "OpenStreetMap", zoom_start = 45)
for points in track_path:
if points == 'a':
folium.Marker(location=[lat[0], lon[0]],popup='Baslangıc Noktası').add_to(m)
elif points == 'b':
folium.Marker(location=[lat[1], lon[1]],popup='Eskisehir', tooltip = "click for more").add_to(m)
elif points == 'c':
folium.Marker(location=[lat[2], lon[2]],popup='Eskisehir', tooltip = "click for more").add_to(m)
elif points == 'd':
folium.Marker(location=[lat[3], lon[3]],popup='d',icon=folium.Icon(color='green')).add_to(m)
elif points == 'e':
folium.Marker(location=[lat[4], lon[4]],popup='e',icon=folium.Icon(color='green')).add_to(m)
elif points == 'f':
folium.Marker(location=[lat[5], lon[5]],popup='f',icon=folium.Icon(color='green')).add_to(m)
elif points == 'g':
folium.Marker(location=[lat[6], lon[6]],popup='g',icon=folium.Icon(color='green')).add_to(m)
elif points == 'h':
folium.Marker(location=[lat[7], lon[7]],popup='h',icon=folium.Icon(color='green')).add_to(m)
m.save('index.html')
m = Basemap(projection = 'cyl',
llcrnrlat = 36,
llcrnrlon = 26,
urcrnrlat = 42,
urcrnrlon = 45,
resolution = 'f')
m.drawcoastlines()
m.drawcountries(linewidth=2)
#m.drawstates(color = 'b')
m.bluemarble()
xs = []
ys = []
print(track_path)
#track_path=['a', 'd', 'g', 'h']
for point in track_path:
if point == 'a':
print(point)
a1, a2 = lon[0], lat[0]
print(a1)
axpt, aypt = m(a1, a2)
print(axpt)
xs.append(axpt)
ys.append(aypt)
m.plot(axpt,axpt, 'co', markersize = 1)
elif point == 'b':
print(point)
b1, b2 = lon[1], lat[1]
bxpt, bypt = m(b1, b2)
xs.append(bxpt)
ys.append(bypt)
m.plot(bxpt,bypt, 'co', markersize = 1)
elif point == 'c':
print(point)
c1, c2 = lon[2], lat[2]
xpt, ypt = m(c1, c2)
xs.append(cxpt)
ys.append(cypt)
m.plot(cxpt,cypt, 'co', markersize = 1)
elif point == 'd':
print(point)
d1, d2 = lon[3], lat[3]
dxpt, dypt = m(d1, d2)
xs.append(dxpt)
ys.append(dypt)
m.plot(dxpt,dypt, 'co', markersize = 1)
elif point == 'e':
print(point)
e1, e2 = lon[5], lat[5]
expt, eypt = m(e1, e2)
xs.append(expt)
ys.append(eypt)
m.plot(expt,eypt, 'co', markersize = 1)
elif point == 'f':
print(point)
f1, f2 = lon[4], lat[4]
fxpt, fypt = m(f1, f2)
xs.append(fxpt)
ys.append(fypt)
m.plot(fxpt,fypt, 'co', markersize = 1)
elif point == 'g':
print(point)
g1, g2 = lon[6], lat[6]
gxpt, gypt = m(g1, g2)
xs.append(gxpt)
ys.append(gypt)
m.plot(gxpt,gypt, 'co', markersize = 1)
elif point == 'h':
print(point)
h1, h2 = lon[7], lat[7]
hxpt, hypt = m(h1, h2)
xs.append(hxpt)
ys.append(hypt)
m.plot(hxpt,hypt, 'co', markersize = 1)
print(xs)
print(ys)
m.plot(xs, ys, color = 'r', linewidth=2, label='Flight 98')
#m.drawgreatcircle(NYClat, NYClon, LALlat, LALlon, label = 'Arc')
plt.legend()
plt.title("Mapp!")
plt.show()