-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerator_random.py
46 lines (37 loc) · 1.27 KB
/
generator_random.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import random
import numpy as np
import cv2
from cv2 import imread
import cv2
import os
def getImage(i, source, main_dir, ext, prefix):
name = prefix + str(i) + ext
path = os.path.join(main_dir, source , name)
img = imread(path, 0)
print(main_dir + source + '/' + name)
img = imread(main_dir + source + '/' + name, 0)
img = img.reshape((img.shape[0], img.shape[1], 1))
img = cv2.resize(img, (224, 224))
img = img.reshape(224, 224, 1)
img = img.astype('float32')
img /= 255
return img
def getRandom(start, end):
return random.randint(start, end)
def generate(size, max=6):
while(True):
frame_ext = '.jpg'
audio_ext = '.png'
audio_pre = ''
video_pre = ''
frame_size = (224, 224)
i = getRandom(1, size)
folder_num = getRandom(1, max)
dir = os.path.join('..', 'data', 'data', str(folder_num))
x = getImage(i , '' , dir, frame_ext, video_pre)
a = getImage(i , '' , dir, audio_ext, audio_pre)
g = getImage(i+1, '' , dir, frame_ext, video_pre)
x = x.reshape((1, x.shape[0], x.shape[1], x.shape[2]))
a = a.reshape((1, a.shape[0], a.shape[1], a.shape[2]))
g = g.reshape((1, g.shape[0], g.shape[1], g.shape[2]))
yield([x, a], g)