-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathconversation.py
44 lines (33 loc) · 1.54 KB
/
conversation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from langchain.text_splitter import RecursiveCharacterTextSplitter
from hashira.utils import DocsJSONLLoader, get_file_path, \
get_openai_api_key # verifica que éxista el api key como variable de entorno
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from rich.console import Console # sirve para poner colores a la consola
console = Console()
recreate_chroma_db = False # Variable Global. Si está en True crea pro primera vez la vectorstore, si está en False,
# entonces solo la carga
def load_documents(file_path: str):
loader = DocsJSONLLoader(file_path)
data = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1600, length_function=len, chunk_overlap=160
)
return text_splitter.split_documents(data)
def get_chroma_db(embeddings, documents, path):
if recreate_chroma_db:
console.print("RECREANDO CHROMA DB")
return Chroma.from_documents(
documents=documents, embedding=embeddings, persist_directory=path
)
else:
console.print("CARGANDO CHROMA EXISTENTE")
return Chroma(persist_directory=path, embedding_function=embeddings)
def main():
documents = load_documents(get_file_path())
get_openai_api_key()
embeddings = OpenAIEmbeddings(model="text-embedding-ada-002")
vectorstore_chroma = get_chroma_db(embeddings, documents, "chroma_docs")
console.print(f"[green]Documentos {len(documents)} cargados.[/green]")
if __name__ == '__main__':
main()