-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnsmc.py
169 lines (130 loc) · 6.26 KB
/
nsmc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# -*- coding: utf-8 -*-
import numpy as np
import hgtk
import pandas as pd
import io, os, sys
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
from subchar_rule import subchar_dict
import tensorflow as tf
from tensorflow.keras import optimizers
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Flatten, Dense, Embedding, Conv1D, LSTM, Dropout
from tensorflow.python.keras.preprocessing.sequence import pad_sequences
from tensorflow.python.keras.preprocessing.text import Tokenizer
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras import backend as K
END_CHAR = "&"
END_JAMO = "^"
tf.get_logger().setLevel('ERROR')
def recall(y_target, y_pred):
y_target_yn = K.round(K.clip(y_target, 0, 1))
y_pred_yn = K.round(K.clip(y_pred, 0, 1))
count_true_positive = K.sum(y_target_yn * y_pred_yn)
count_true_positive_false_negative = K.sum(y_target_yn)
recall = count_true_positive / (count_true_positive_false_negative + K.epsilon())
return recall
def precision(y_target, y_pred):
y_pred_yn = K.round(K.clip(y_pred, 0, 1))
y_target_yn = K.round(K.clip(y_target, 0, 1))
count_true_positive = K.sum(y_target_yn * y_pred_yn)
count_true_positive_false_positive = K.sum(y_pred_yn)
precision = count_true_positive / (count_true_positive_false_positive + K.epsilon())
return precision
def f1score(y_target, y_pred):
_recall = recall(y_target, y_pred)
_precision = precision(y_target, y_pred)
_f1score = (2 * _recall * _precision) / (_recall + _precision + K.epsilon())
return _f1score
def main():
train_code = sys.argv[1]
vocab = sys.argv[2]
epochs = eval(sys.argv[3])
dropout = eval(sys.argv[4])
recurrent_dropout = eval(sys.argv[5])
decompose_level = 4 if "stroke" in train_code else 5 if "cji" in train_code else 6
if vocab == 'pretrain':
FNAME = f"./results/analogy_0.025/{train_code}.vec"
else:
FNAME = f"./vectors/sent_analysis/{train_code}_vectors.txt"
fin = io.open(FNAME, 'r', encoding='utf-8', newline='\n', errors='ignore')
word_vecs = {}
for i, line in enumerate(fin):
tokens = line.rstrip().split(' ')
array = np.array(list(map(float, tokens[1:])))
array = array / np.sqrt(np.sum(array * array + 1e-8))
word_vecs[tokens[0]] = array
train_data = pd.read_csv(f"./data/parsed_sent_analysis/parsed_sent_analysis_train_{decompose_level}.txt", header=0, delimiter='\t', quoting=3)
dev_data = pd.read_csv(f"./data/parsed_sent_analysis/parsed_sent_analysis_dev_{decompose_level}.txt", header=0, delimiter='\t', quoting=3)
test_data = pd.read_csv(f"./data/parsed_sent_analysis/parsed_sent_analysis_test_{decompose_level}.txt", header=0, delimiter='\t', quoting=3)
text_train = []
for line in open(f"./data/parsed_sent_analysis/parsed_sent_analysis_train_{decompose_level}.txt", 'r', encoding="utf-8"):
if line.startswith("id"):
continue
words = list(line.split('\t')[1].strip().split())
text_train.append(words)
text_dev = []
for line in open(f"./data/parsed_sent_analysis/parsed_sent_analysis_dev_{decompose_level}.txt", 'r', encoding="utf-8"):
if line.startswith("id"):
continue
words = list(line.split('\t')[1].strip().split())
text_dev.append(words)
text_test = []
for line in open(f"./data/parsed_sent_analysis/parsed_sent_analysis_test_{decompose_level}.txt", 'r', encoding="utf-8"):
if line.startswith("id"):
continue
words = list(line.split('\t')[1].strip().split())
text_test.append(words)
if vocab == "train":
text_to_use = text_train
else:
text_to_use = text_train + text_dev + text_test
tokenizer = Tokenizer(oov_token="<UNK>")
tokenizer.fit_on_texts(text_to_use)
MAX_SEQUENCE_LENGTH = 30
train_sequence = tokenizer.texts_to_sequences(text_train) # max 47
train_inputs = pad_sequences(train_sequence, maxlen=MAX_SEQUENCE_LENGTH, padding='post')
train_labels = np.array(train_data['label'])
dev_sequence = tokenizer.texts_to_sequences(text_dev) # max 40
dev_inputs = pad_sequences(dev_sequence, maxlen=MAX_SEQUENCE_LENGTH, padding='post')
dev_labels = np.array(dev_data['label'])
test_sequence = tokenizer.texts_to_sequences(text_test) # max 38
test_inputs = pad_sequences(test_sequence, maxlen=MAX_SEQUENCE_LENGTH, padding='post')
test_labels = np.array(test_data['label'])
word_size = len(tokenizer.word_index) + 1
EMBEDDING_DIM = 300
embedding_matrix = np.zeros((word_size, EMBEDDING_DIM))
for word, idx in tokenizer.word_index.items():
embedding_vector = word_vecs[word] if word in word_vecs else None
if embedding_vector is not None:
embedding_matrix[idx] = embedding_vector
random_seeds = [42, 99]
acc_total = 0
precision_total = 0
recall_total = 0
f1_total = 0
for seed in random_seeds:
tf.keras.backend.clear_session()
tf.random.set_seed(seed)
model = Sequential()
model.add(Embedding(word_size, 300, input_length=MAX_SEQUENCE_LENGTH, weights=[embedding_matrix], trainable=False))
model.add(LSTM(300, dropout=dropout, recurrent_dropout=recurrent_dropout))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy', precision, recall, f1score])
model.fit(train_inputs, train_labels, epochs=epochs, verbose=0, validation_data=(dev_inputs, dev_labels)) #, callbacks=[es])
_loss, _acc, _precision, _recall, _f1score = model.evaluate(test_inputs, test_labels, verbose=0)
acc_total += _acc
precision_total += _precision
recall_total += _recall
f1_total += _f1score
print(f"Results for {train_code}, {vocab}, epochs {epochs}")
acc_total /= len(random_seeds)
acc_total *= 100
precision_total /= len(random_seeds)
recall_total /= len(random_seeds)
f1 = 2 / (1/precision_total + 1/recall_total)
f1_total /= len(random_seeds)
print('accuracy: {:.2f}%, precision: {:.3f}, recall: {:.3f}, f1score: {:.3f}, f1_average: {:.3f}'.format(acc_total, precision_total, recall_total, f1, f1_total))
print()
if __name__ == "__main__":
main()