Skip to content

Latest commit

 

History

History
17 lines (12 loc) · 650 Bytes

README.md

File metadata and controls

17 lines (12 loc) · 650 Bytes

MolTRES

MolTRES: Improving Chemical Language Representation Learning for Molecular Property Prediction [EMNLP 2024]

Jun-Hyung Park, Yeachan Kim, Mingyu Lee, Hyuntae Park, and SangKeun Lee

Introduce new techniques based on generator-discriminator training and latent knowledge embedding to improve pre-trained chemical language models [paper]

This implementation is based on [IBM/MoLFormer].

Tested Environments

  • Python 3.10
  • Pytorch 2.3.1
  • Pytorch-lightning 2.2.4
  • Pytorch-fast-transformers 0.4.0
  • RDKit 2023.9.6