forked from OPR-Project/OpenPlaceRecognition
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
186 lines (156 loc) · 6.52 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
"""Training script."""
from datetime import datetime
from pathlib import Path
import hydra
import torch
import wandb
from hydra.utils import instantiate
from omegaconf import DictConfig, OmegaConf
from opr.datasets.dataloader_factory import make_dataloaders
from opr.testing import test
from opr.training import epoch_loop
from opr.utils import flatten_dict, set_seed
@hydra.main(config_path="configs", config_name="config", version_base=None)
def train(cfg: DictConfig):
"""Summary of training script.
Args:
cfg (DictConfig): config to train with
"""
if not cfg.general.debug and not cfg.wandb.disabled:
config_dict = OmegaConf.to_container(cfg, resolve=True, throw_on_missing=True)
wandb.init(
name=cfg.wandb.run_name,
project=cfg.wandb.project,
settings=wandb.Settings(start_method="thread"),
config=config_dict,
)
wandb.save(f"configs/{wandb.run.name}.yaml")
run_name = wandb.run.name
else:
run_name = "debug"
checkpoints_dir = (
Path(cfg.general.checkpoints_dir) / f"{datetime.now().strftime('%Y-%m-%d-%H-%M-%S')}_{run_name}"
)
if not checkpoints_dir.exists():
checkpoints_dir.mkdir(parents=True)
set_seed(seed=cfg.general.seed, make_deterministic=False) # we cannot use determenistic operators here :(
print(f"=> Seed: {cfg.general.seed}")
print("=> Instantiating model...")
model = instantiate(cfg.model)
print(model)
print("=> Instantiating loss...")
loss_fn = instantiate(cfg.loss)
print("=> Making dataloaders...")
dataloaders = make_dataloaders(
dataset_cfg=cfg.dataset.dataset,
batch_sampler_cfg=cfg.dataset.sampler,
num_workers=cfg.dataset.num_workers,
)
print("=> Instantiating optimizer...")
params_list = []
modalities = list(set([m.split("_")[0] for m in cfg.general.modalities]))
for modality in modalities:
print(modality)
params_list.append(
{
"params": getattr(model, f"{modality}_module").parameters(),
"lr": cfg.optimizer.learning_rates[f"{modality}_lr"],
}
)
optimizer = instantiate(cfg.optimizer.fn, params=params_list)
print("Instantiating scheduler...")
scheduler = instantiate(cfg.scheduler, optimizer=optimizer)
model = model.to(cfg.general.device)
# ==========> TRAIN LOOP:
best_recall_at_1 = 0.0
for epoch in range(cfg.general.epochs):
print(f"\n\n=====> Epoch {epoch+1}:")
# TODO: resolve mypy typing here
train_batch_size = dataloaders["train"].batch_sampler.batch_size # type: ignore
val_batch_size = dataloaders["val"].batch_sampler.batch_size # type: ignore
print("\n=> Training:\n")
train_stats, train_rate_non_zero = epoch_loop(
dataloader=dataloaders["train"],
model=model,
loss_fn=loss_fn,
optimizer=optimizer,
scheduler=scheduler,
phase="train",
device=cfg.general.device,
)
print(f"\ntrain_rate_non_zero = {train_rate_non_zero}")
batch_expansion_th = cfg.general.batch_expansion_th
if batch_expansion_th is not None:
if batch_expansion_th == 1.0:
print("Batch expansion rate is set to every epoch. Increasing batch size.")
# TODO: resolve mypy typing here
dataloaders["train"].batch_sampler.expand_batch() # type: ignore
elif train_rate_non_zero is None:
print(
"\nWARNING: 'batch_expansion_th' was set, but 'train_rate_non_zero' is None. ",
"The batch size was not expanded.",
)
elif train_rate_non_zero < batch_expansion_th:
print(
"Average non-zero triplet ratio is less than threshold: ",
f"{train_rate_non_zero} < {batch_expansion_th}",
)
# TODO: resolve mypy typing here
dataloaders["train"].batch_sampler.expand_batch() # type: ignore
print("\n=> Validating:\n")
val_stats, val_rate_non_zero = epoch_loop(
dataloader=dataloaders["val"],
model=model,
loss_fn=loss_fn,
optimizer=optimizer,
phase="val",
device=cfg.general.device,
)
print(f"\nval_rate_non_zero = {val_rate_non_zero}")
print("\n=> Testing:\n")
recall_at_n, recall_at_one_percent, mean_top1_distance = test(
model=model,
descriptor_key=cfg.general.test_modality,
dataloader=dataloaders["test"],
device=cfg.general.device,
)
stats_dict = {}
stats_dict["test"] = {
"mean_top1_distance": mean_top1_distance,
"recall_at_1%": recall_at_one_percent,
"recall_at_1": recall_at_n[0],
"recall_at_3": recall_at_n[2],
"recall_at_5": recall_at_n[4],
"recall_at_10": recall_at_n[9],
}
stats_dict["train"] = train_stats
stats_dict["train"]["batch_size"] = train_batch_size
stats_dict["val"] = val_stats
stats_dict["val"]["batch_size"] = val_batch_size
# wandb.log({'Test recall_at_1': recall_at_n[0],
# 'Test Mean Recall@1%': recall_at_one_percent,
# 'Test Mean top-1 distance': mean_top1_distance,
# 'batch_size': train_stats['batch_size'],
# 'train_total_loss': train_stats['total_loss'],
# 'val_total_loss': val_stats['total_loss']})
# saving checkpoints
checkpoint_dict = {
"epoch": epoch + 1,
"config": cfg,
"stats_dict": stats_dict,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
}
torch.save(checkpoint_dict, checkpoints_dir / "last.pth")
# wandb logging
if not cfg.general.debug and not cfg.wandb.disabled:
wandb.log(flatten_dict(stats_dict))
wandb.save(str((checkpoints_dir / "last.pth").relative_to(".")))
if recall_at_n[0] > best_recall_at_1:
print("Recall@1 improved!")
torch.save(checkpoint_dict, checkpoints_dir / "best.pth")
best_recall_at_1 = recall_at_n[0]
if not cfg.general.debug and not cfg.wandb.disabled:
wandb.save(str((checkpoints_dir / "best.pth").relative_to(".")))
if __name__ == "__main__":
train()