-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
290 lines (235 loc) · 6.13 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
#include <cstdio>
#include <cstdlib>
#include <functional>
#include <memory>
#include <vector>
#include <queue>
#include <pthread.h>
#include <unistd.h>
#include "gtest/gtest.h"
class Matrix
{
public:
int& at(size_t i, size_t j) {
return p[j*x + i];
};
int at(size_t i, size_t j) const {
return p[j*x + i];
};
Matrix(size_t x, size_t y) : p(new int[(x*y)]), x(x), y(y) {
auto pred = [](Matrix& m, size_t i, size_t j) { m.at(i,j) = 0; };
foreach(pred);
};
virtual ~Matrix() {
delete[] p;
};
void foreach(std::function<void (Matrix& m, size_t x, size_t y)> pred) {
for(size_t i = 0; i < x; ++i) {
for (size_t j = 0; j < y; ++j) {
pred(*this, i, j);
}
}
}
int sindex(size_t i) const {
return p[i];
}
size_t get_x() const {
return x;
}
size_t get_y() const {
return y;
}
virtual Matrix* multiply(const Matrix& a, const Matrix& b)
{
if (a.get_x() != b.get_y()) {
return 0;
}
Matrix* c = new Matrix(b.get_x(), a.get_y());
auto multiply = [&a,&b](Matrix& m, size_t i, size_t j) {
for (size_t k = 0; k < b.get_y(); ++k) {
m.at(i, j) += a.at(k, j) * b.at(i, k);
}
};
c->foreach(multiply);
return c;
}
void print() {
auto print_fun = [this](Matrix& m, size_t i, size_t j) {
printf("%d ", m.at(i,j));
if (j == this->get_x()) {
printf("\n");
}
};
foreach(print_fun);
}
protected:
int* p;
size_t x;
size_t y;
};
pthread_mutex_t thread_pool_m = PTHREAD_MUTEX_INITIALIZER;
class MatrixThreaded : public Matrix
{
public:
MatrixThreaded(size_t x, size_t y) : Matrix(x, y) {
};
struct MultiplyData {
MultiplyData(Matrix* _this,
const Matrix& a, const Matrix& b,
size_t start, size_t end, size_t thread_index) :
_this(_this), a(a), b(b), start(start), end(end), thread_index(thread_index), is_finished(0) {
}
Matrix* _this;
const Matrix& a;
const Matrix& b;
size_t start;
size_t end;
size_t thread_index;
volatile bool is_finished;
};
static void* multiply_thread_fun(void *multiply_data) {
MultiplyData* data = static_cast<MultiplyData*>(multiply_data);
Matrix* const _this = data->_this;
for (size_t i = data->start; i < data->end; ++i) {
for(size_t j = 0; j < _this->get_y(); ++j) {
unsigned int sum = 0;
for (size_t k = 0; k < data->b.get_y(); ++k) {
sum += data->a.at(k, j) * data->b.at(i, k);
}
_this->at(i, j) = sum;
}
}
data->is_finished = 1;
return 0;
}
template<size_t i, size_t to>
struct For {
static const size_t found = 1;
};
template<size_t to>
struct For<to,to> {
static const size_t found = to;
};
template<size_t THREADS>
struct Manager {
Manager() : threads_available(0), ALL((1 << THREADS) - 1)
{
for(size_t t_i = 0; t_i < THREADS; ++t_i) {
threads_available += (1 << t_i);
}
}
void republish(size_t index) {
threads_available += (1 << index);
}
int join() {
for(size_t t_i = 0; t_i < THREADS; ++t_i) {
if (!(threads_available & (1 << t_i))) {
threads_available += (1 << t_i);
return t_i;
}
}
return THREADS;
}
int select() {
for(size_t t_i = 0; t_i < THREADS; ++t_i) {
if (threads_available & (1 << t_i)) {
threads_available -= (1 << t_i);
return t_i;
}
}
return THREADS;
}
int is_any_thread_used() {
return threads_available != ALL;
}
int full() {
return threads_available == 0;
}
int threads_available;
const int ALL;
};
virtual Matrix* multiply(const Matrix& a, const Matrix& b)
{
if (a.get_x() != b.get_y()) {
return 0;
}
Matrix* c = new MatrixThreaded(b.get_x(), a.get_y());
static const size_t THREAD_NUM = 4;
pthread_t threads[THREAD_NUM];
Manager<THREAD_NUM> manager;
MultiplyData prototype(c, a, b, 0, 0, 0);
std::vector<MultiplyData> data(THREAD_NUM, prototype);
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
void *status;
for(size_t i = 0; i < x; ) {
for (size_t i = 0; i < THREAD_NUM; ++i) {
if(data[i].is_finished) {
pthread_join(threads[i], &status);
manager.republish(i);
data[i].is_finished = 0;
}
}
if(!manager.full()) {
size_t t_index = manager.select();
data[t_index].start = i;
data[t_index].end = (i + 100 < x) ? i + 100 : x;
data[t_index].thread_index = t_index;
data[t_index].is_finished = 0;
pthread_create(&threads[t_index],
&attr, multiply_thread_fun, (void*) &data.data()[t_index]);
i = i + 100;
} else {
usleep(100);
}
}
while(manager.is_any_thread_used()) {
size_t thread_index = manager.join();
pthread_join(threads[thread_index], &status);
}
pthread_attr_destroy(&attr);
return c;
}
};
TEST(MatrixThreaded, SmallTest) {
const size_t SIZE = 16;
MatrixThreaded a(SIZE, SIZE);
MatrixThreaded b(SIZE, SIZE);
for (size_t i = 0; i < SIZE; ++i) {
for (size_t j = 0; j < SIZE; ++j) {
a.at(i,j) = (i + j) % 1024;
b.at(i,j) = (i - j) % 1024;
}
}
std::unique_ptr<Matrix> c(a.multiply(a, b));
}
TEST(MatrixThreaded, Large1024Test) {
const size_t SIZE = 5024;
MatrixThreaded a(SIZE, SIZE);
MatrixThreaded b(SIZE, SIZE);
for (size_t i = 0; i < SIZE; ++i) {
for (size_t j = 0; j < SIZE; ++j) {
a.at(i,j) = (i + j) % 1024;
b.at(i,j) = (i - j) % 1024;
}
}
std::unique_ptr<Matrix> c(a.multiply(a, b));
}
TEST(MatrixNotThreaded, Large1024Test) {
const size_t SIZE = 5024;
Matrix a(SIZE, SIZE);
Matrix b(SIZE, SIZE);
for (size_t i = 0; i < SIZE; ++i) {
for (size_t j = 0; j < SIZE; ++j) {
a.at(i,j) = (i + j) % 1024;
b.at(i,j) = (i - j) % 1024;
}
}
std::unique_ptr<Matrix> c(a.multiply(a, b));
}
int main(int argc, char **argv)
{
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}