-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimg_to_tf_record.py
313 lines (239 loc) · 11.9 KB
/
img_to_tf_record.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# Copyright 2018 YangYuQi. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
in_dir include breed and all images, it must like below:
--------------------------------------------------------
in_dir/breed1/xxx.jpg
in_dir/breed1/yyy.jpg
...
in_dir/breed1/zzz.jpg
in_dir/breed2/xxx.jpg
in_dir/breed2/yyy.jpg
...
in_dir/breed2/zzz.jpg
......
in_dir/breedn/xxx.jpg
in_dir/breedn/yyy.jpg
...
in_dir/breedn/zzz.jpg
--------------------------------------------------------
out_dir will save output tf_redores files, it will include
training files and test files and label file,
the test images accounts for 20% of the total accounts.
????_record.txt include the image's amount of every record file.
The directory like below:
--------------------------------------------------------
out_dir/train_1.tfr
out_dir/train_2.tfr
...
out_dir/train_n.tfr
out_dir/test_1.tfr
out_dir/test_2.tfr
...
out_dir/test_n.tfr
out_dir/label.txt
out_dir/train_record.txt
out_dir/test_record.txt
--------------------------------------------------------
"""
import glob, os
import datetime
import tensorflow as tf
from PIL import Image # sudo pip3 install pillow -i https://pypi.tuna.tsinghua.edu.cn/simple
# because my tensorflow is CPU version, it running will report 'warning', write below line for disable this 'warning'.
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
class Img2TFRecord(object):
def __init__(self, in_dir, out_dir, image_type = 'jpg', train_rate = 0.8):
"""Initializes function and write labels to out_dir/label.txt.
Args:
in_dir: a directory containing all breed images, it must is a absolute path and must exist.
out_dir: a directory for save tf_records files for output, it must is a absolute path.
image_type: the image's type of input.
Returns:
none.
"""
if not os.path.exists(out_dir):
os.makedirs(out_dir)
self.__in_dir = in_dir
self.__out_dir = out_dir
self.__image_type = image_type
self.__train_rate = train_rate
def generate_tf_record_files(self, resize, channel = 1, one_record_max_imgaes = 1024):
"""generate tf_record files to out_dir.
Args:
resize: (width, height). example: (250, 151)
channel: record images channel of output -> 1 = Gray Scale Image; 3 = RGB; 4 = RGBA.
one_record_max_imgaes: the max image amount of one tf_record file.
Returns:
none.
"""
self.__generate_label_file_list()
self.__generate_tf_record_files('train', self.__train_image_with_breed, resize, channel, one_record_max_imgaes)
self.__generate_tf_record_files('test', self.__test_image_with_breed, resize, channel, one_record_max_imgaes)
print( "generate_tf_record_files file finish.\n" )
def read_train_images_from_tf_records( self, batch_size, reshape, label_size = 0 ):
"""batch read train images from tf_record files. And convert image data to 0.0 ~ 1.0
Args:
batch_size: how many images in one batch, example: 10
reshape: [height, width, channel], must be equal image size. example: [250, 151, 1]
label_size: how many class of total label, example: 40
Returns:
image_batch(float32), label_batch(float32)
if label_size > 0 then: label_batch is one hot type, example: [batch_size][0] == [0., 0., 1., 0., 0.], [batch_size][1] == [0., 0., 0., 1., 0.]
else: label_batch only label number, example: [batch_size][0] == 2., [batch_size][1] == 3.
"""
records_path = os.path.join(self.__out_dir, 'train_*.tfr')
return self.read_images_from_tf_records(records_path, batch_size, reshape, label_size)
def read_test_images_from_tf_records( self, batch_size, reshape, label_size = 0 ):
"""batch read test images from tf_record files. And convert image data to 0.0 ~ 1.0
Args:
batch_size: how many images in one batch, example: 10
reshape: [height, width, channel], must be equal image size. example: [250, 151, 1]
label_size: how many class of total label, example: 40
Returns:
image_batch(float32), label_batch(float32)
if label_size > 0 then: label_batch is one hot type, example: [batch_size][0] == [0., 0., 1., 0., 0.], [batch_size][1] == [0., 0., 0., 1., 0.]
else: label_batch only label number, example: [batch_size][0] == 2., [batch_size][1] == 3.
"""
records_path = os.path.join(self.__out_dir, 'test_*.tfr')
return self.read_images_from_tf_records(records_path, batch_size, reshape, label_size)
@staticmethod
def read_images_from_tf_records( records_path, batch_size, reshape, label_size = 0 ):
"""batch read images from tf_record files. And convert image data to 0.0 ~ 1.0
Args:
records_path: example: '/tmp/tf_out/tmp1/train_*.tfr'
batch_size: how many images in one batch, example: 10
reshape: [height, width, channel], must be equal image size. example: [250, 151, 1]
label_size: how many class of total label, example: 40
Returns:
image_batch, label_batch
"""
file_path = tf.train.match_filenames_once( records_path )
file_queue = tf.train.string_input_producer( file_path )
reader = tf.TFRecordReader()
_, serialized = reader.read( file_queue )
feature = {
'label': tf.FixedLenFeature([], tf.int64), # tf.string
'image': tf.FixedLenFeature([], tf.string)
}
features = tf.parse_single_example( serialized, features = feature )
record_image = tf.decode_raw(features['image'], tf.uint8)
label = tf.cast( features['label'], tf.int64 ) # tf.string
image = tf.reshape( record_image, reshape ) # [250, 151, 1] # reshape
image = tf.cast(image, tf.float32) * (1./255)
if 0 < label_size:
label = tf.one_hot(label, label_size, 1, 0)
label = tf.cast( label, tf.float32 )
min_after_dequeue = 10
capacity = min_after_dequeue + 3 * batch_size
image_batch, label_batch = tf.train.shuffle_batch([image, label], batch_size = batch_size, capacity = capacity, min_after_dequeue = min_after_dequeue)
return image_batch, label_batch
def __generate_tf_record_files(self, prefix, image_with_breed, resize, channel = 1, one_record_max_imgaes = 1024):
# delete info file
info_file = os.path.join(self.__out_dir, prefix + '_record.txt')
if os.path.exists(info_file):
os.remove(info_file)
# main code
writer = None
current_index = 0
image_amount = 0
for i, label_file in enumerate(image_with_breed):
if 0 == i % one_record_max_imgaes:
if writer:
writer.close()
writer = None
self.__save_record_info_to_file(prefix, current_index - 1, image_amount)
record_file = os.path.join(self.__out_dir, prefix + '_' + str(current_index) + '.tfr')
writer = tf.python_io.TFRecordWriter(record_file)
current_index += 1
image_amount = 0
img = None
try:
img = Image.open( label_file[1] )
if 1 == channel:
img = img.convert('L')
elif 3 == channel:
img = img.convert('RGB')
elif 4 == channel:
img = img.convert('RGBA')
img = img.resize( resize )
except Exception as e:
print('image decode fail: ', label_file[1], ' err: ', e)
continue
image_bytes = img.tobytes()
image_label = label_file[0]
feature = {
'label': tf.train.Feature(int64_list=tf.train.Int64List(value = [image_label])),
'image': tf.train.Feature(bytes_list=tf.train.BytesList(value = [image_bytes]))
}
example = tf.train.Example( features=tf.train.Features(feature = feature) )
writer.write(example.SerializeToString())
image_amount += 1
if writer:
writer.close()
writer = None
self.__save_record_info_to_file(prefix, current_index - 1, image_amount)
print( "generate {} record file finish, total {} files.\n".format(prefix, current_index) )
def __save_record_info_to_file(self, prefix, record_index, image_amount):
info_file = os.path.join(self.__out_dir, prefix + '_record.txt')
with open(info_file, 'a') as f:
nowTime = datetime.datetime.now().strftime('%Y-%m-%d_%H:%M:%S')
f.write(nowTime + '\t' + prefix + '_' + str(record_index) + '.tfr\t' + str(image_amount) + '\n')
def __generate_label_file_list(self):
"""save out_dir/label.txt and add (label, file_path) to self.__train_image_with_breed and self.__test_image_with_breed
self.__????_image_with_breed: [(label, img1 absolute path), (label, img2 absolute path), ... (label, imgn absolute path)]
"""
self.__breed_label = {}
self.__train_image_with_breed = []
self.__test_image_with_breed = []
# get all jpg files absolute path list
image_file_names = glob.glob( self.__in_dir + '/*/*.' + self.__image_type )
image_file_names.sort()
index = 0
for i, file_path in enumerate(image_file_names):
breed = file_path.split('/')[-2]
label = self.__breed_label.get(breed)
if label is None:
label = index
self.__breed_label[breed] = label
index += 1
print("breed = {}, label = {}\n".format(breed, self.__breed_label[breed]))
if i % 10 < self.__train_rate * 10:
self.__train_image_with_breed.append((label, file_path))
else:
self.__test_image_with_breed.append((label, file_path))
self.__save_breed_label_to_file()
def __save_breed_label_to_file(self):
label_breed = sorted(self.__breed_label.items(), key = lambda item:item[1])
with open(self.__out_dir + '/label.txt', 'w') as f:
for item in label_breed:
f.write(str(item[1]) + '\t' + item[0] + '\n')
if __name__ == '__main__':
one_Set = Img2TFRecord('/home/yangyuqi/Downloads/Images', '/tmp/tf_out/tmp1')
# test generate function
#one_Set.generate_tf_record_files( (250, 151) )
# test read function
image_batch, label_batch = one_Set.read_train_images_from_tf_records([250, 151, 1], 5)
init = tf.initialize_all_variables() # tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
with tf.Session() as sess:
sess.run(init)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners( sess = sess, coord = coord )
for i in range(3):
img, lab = sess.run([image_batch, label_batch])
print(img, lab)
#关闭线程
coord.request_stop()
coord.join(threads)