-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathAdding Layers to DenseNet121.py
42 lines (41 loc) · 1.66 KB
/
Adding Layers to DenseNet121.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
head = clf_model.output
head = AveragePooling2D(pool_size=(4,4))(head)
head = Flatten(name='Flatten')(head)
head = Dense(256, activation='relu')(head)
head = Dropout(0.3)(head)
head = Dense(256, activation='relu')(head)
head = Dropout(0.3)(head)
head = Dense(128, activation='relu')(head)
head = Dropout(0.1)(head)
head = Dense(2, activation='softmax')(head)
model = Model(clf_model.input, head)
model.compile(loss = 'categorical_crossentropy',
optimizer='adam',
metrics= ["accuracy"]
)
model.summary()
earlystopping = EarlyStopping(monitor='val_loss',
mode='min',
verbose=1,
patience=20
)
checkpointer = ModelCheckpoint(filepath="clf-densenet-weights_new2.hdf5",
verbose=1,
save_best_only=True,
monitor='val_acc',
mode='max'
)
reduce_lr = ReduceLROnPlateau(monitor='val_loss',
mode='min',
verbose=1,
patience=10,
min_delta=0.0001,
factor=0.1
)
callbacks = [checkpointer, earlystopping, reduce_lr]
h = model.fit(train_generator,
steps_per_epoch=total_images // 16,
epochs = 70,
validation_data= valid_generator,
validation_steps= valid_generator.n // valid_generator.batch_size,
callbacks=[checkpointer, earlystopping])