-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathberny.py
290 lines (255 loc) · 9.51 KB
/
berny.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
import sys
from collections import namedtuple
from itertools import chain
import numpy as np
from numpy import dot, eye
from numpy.linalg import norm
from . import Math
from .coords import InternalCoords
from .Logger import Logger
if sys.version_info[:2] >= (3, 5):
from collections.abc import Generator
else:
from ._py2 import Generator # noqa
__version__ = '0.2.2'
__all__ = ['Berny']
defaults = {
'gradientmax': 0.45e-3,
'gradientrms': 0.15e-3,
'stepmax': 1.8e-3,
'steprms': 1.2e-3,
'trust': 0.3,
'dihedral': True,
'superweakdih': False,
}
"""
- gradientmax, gradientrms, stepmax, steprms:
Convergence criteria in atomic units ("step" refers to the step in
internal coordinates, assuming radian units for angles).
- trust:
Initial trust radius in atomic units. It is the maximum RMS of the
quadratic step (see below).
- dihedral:
Form dihedral angles.
- superweakdih:
Form dihedral angles containing two or more noncovalent bonds.
"""
class Berny(Generator):
"""
Generator that receives energy and gradients and yields the next geometry.
:param Gometry geom: geometry to start with
:param Logger log: used for logging if given
:param bool debug: if True, the generator yields debug info on receiving
the energy and gradients, otherwise it yields None
:param dict restart: start from a state saved from previous run
using ``debug=True``
:param int maxsteps: abort after maximum number of steps
:param int verbosity: if present and log is None, specifies the verbosity of
the default :py:class:`~berny.Logger`
:param params: parameters that override the :py:data:`~berny.berny.defaults`
The Berny object is to be used as follows::
optimizer = Berny(geom)
for geom in optimizer:
# calculate energy and gradients (as N-by-3 matrix)
debug = optimizer.send((energy, gradients))
"""
class State(object):
pass
Point = namedtuple('Point', 'q E g')
def __init__(
self,
geom,
log=None,
debug=False,
restart=None,
maxsteps=100,
verbosity=None,
**params
):
self._log = log or Logger(verbosity=verbosity or 0)
self._debug = debug
self._maxsteps = maxsteps
self._converged = False
self._n = 0
s = self._state = Berny.State()
if restart:
vars(s).update(restart)
return
s.geom = geom
s.params = dict(chain(defaults.items(), params.items()))
s.trust = s.params['trust']
s.coords = InternalCoords(
s.geom, dihedral=s.params['dihedral'], superweakdih=s.params['superweakdih']
)
s.H = s.coords.hessian_guess(s.geom)
s.weights = s.coords.weights(s.geom)
s.future = Berny.Point(s.coords.eval_geom(s.geom), None, None)
s.first = True
for line in str(s.coords).split('\n'):
self._log(line)
def __next__(self):
assert self._n <= self._maxsteps
if self._n == self._maxsteps or self._converged:
raise StopIteration
self._n += 1
return self._state.geom
@property
def trust(self):
"""Current trust radius."""
return self._state.trust
def send(self, energy_gradients): # noqa: D102
log = self._log
log.n = self._n
s = self._state
energy, gradients = energy_gradients
gradients = np.array(gradients)
log('Energy: {:.12}'.format(energy), level=1)
B = s.coords.B_matrix(s.geom)
B_inv = B.T.dot(Math.pinv(np.dot(B, B.T), log=log))
current = Berny.Point(s.future.q, energy, dot(B_inv.T, gradients.reshape(-1)))
if not s.first:
s.H = update_hessian(
s.H, current.q - s.best.q, current.g - s.best.g, log=log
)
s.trust = update_trust(
s.trust,
current.E - s.previous.E,
s.predicted.E - s.interpolated.E,
s.predicted.q - s.interpolated.q,
log=log,
)
dq = s.best.q - current.q
t, E = linear_search(
current.E, s.best.E, dot(current.g, dq), dot(s.best.g, dq), log=log
)
s.interpolated = Berny.Point(
current.q + t * dq, E, t * s.best.g + (1 - t) * current.g
)
else:
s.interpolated = current
if s.trust < 1e-6:
raise RuntimeError('The trust radius got too small, check forces?')
proj = dot(B, B_inv)
H_proj = proj.dot(s.H).dot(proj) + 1000 * (eye(len(s.coords)) - proj)
dq, dE, on_sphere = quadratic_step(
dot(proj, s.interpolated.g), H_proj, s.weights, s.trust, log=log
)
s.predicted = Berny.Point(s.interpolated.q + dq, s.interpolated.E + dE, None)
dq = s.predicted.q - current.q
log('Total step: RMS: {:.3}, max: {:.3}'.format(Math.rms(dq), max(abs(dq))))
q, s.geom = s.coords.update_geom(
s.geom, current.q, s.predicted.q - current.q, B_inv, log=log
)
s.future = Berny.Point(q, None, None)
s.previous = current
if s.first or current.E < s.best.E:
s.best = current
s.first = False
self._converged = is_converged(
gradients, s.future.q - current.q, on_sphere, s.params, log=log
)
if self._n == self._maxsteps:
log('Maximum number of steps reached')
if self._debug:
return vars(s).copy()
def throw(self, *args, **kwargs): # noqa: D102
return Generator.throw(self, *args, **kwargs)
def no_log(msg, **kwargs):
pass
def update_hessian(H, dq, dg, log=no_log):
dH1 = dg[None, :] * dg[:, None] / dot(dq, dg)
dH2 = H.dot(dq[None, :] * dq[:, None]).dot(H) / dq.dot(H).dot(dq)
dH = dH1 - dH2 # BFGS update
log('Hessian update information:')
log('* Change: RMS: {:.3}, max: {:.3}'.format(Math.rms(dH), abs(dH).max()))
return H + dH
def update_trust(trust, dE, dE_predicted, dq, log=no_log):
if dE != 0:
r = dE / dE_predicted # Fletcher's parameter
else:
r = 1.0
log("Trust update: Fletcher's parameter: {:.3}".format(r))
if r < 0.25:
return norm(dq) / 4
elif r > 0.75 and abs(norm(dq) - trust) < 1e-10:
return 2 * trust
else:
return trust
def linear_search(E0, E1, g0, g1, log=no_log):
log('Linear interpolation:')
log('* Energies: {:.8}, {:.8}'.format(E0, E1))
log('* Derivatives: {:.3}, {:.3}'.format(g0, g1))
t, E = Math.fit_quartic(E0, E1, g0, g1)
if t is None or t < -1 or t > 2:
t, E = Math.fit_cubic(E0, E1, g0, g1)
if t is None or t < 0 or t > 1:
if E0 <= E1:
log('* No fit succeeded, staying in new point')
return 0, E0
else:
log('* No fit succeeded, returning to best point')
return 1, E1
else:
msg = 'Cubic interpolation was performed'
else:
msg = 'Quartic interpolation was performed'
log('* {}: t = {:.3}'.format(msg, t))
log('* Interpolated energy: {:.8}'.format(E))
return t, E
def quadratic_step(g, H, w, trust, log=no_log):
ev = np.linalg.eigvalsh((H + H.T) / 2)
rfo = np.vstack((np.hstack((H, g[:, None])), np.hstack((g, 0))[None, :]))
D, V = np.linalg.eigh((rfo + rfo.T) / 2)
dq = V[:-1, 0] / V[-1, 0]
l = D[0]
if norm(dq) <= trust:
log('Pure RFO step was performed:')
on_sphere = False
else:
def steplength(l):
return norm(np.linalg.solve(l * eye(H.shape[0]) - H, g)) - trust
l = Math.findroot(steplength, ev[0]) # minimization on sphere
dq = np.linalg.solve(l * eye(H.shape[0]) - H, g)
on_sphere = True
log('Minimization on sphere was performed:')
dE = dot(g, dq) + 0.5 * dq.dot(H).dot(dq) # predicted energy change
log('* Trust radius: {:.2}'.format(trust))
log('* Number of negative eigenvalues: {}'.format((ev < 0).sum()))
log('* Lowest eigenvalue: {:.3}'.format(ev[0]))
log('* lambda: {:.3}'.format(l))
log('Quadratic step: RMS: {:.3}, max: {:.3}'.format(Math.rms(dq), max(abs(dq))))
log('* Predicted energy change: {:.3}'.format(dE))
return dq, dE, on_sphere
def is_converged(forces, step, on_sphere, params, log=no_log):
criteria = [
('Gradient RMS', Math.rms(forces), params['gradientrms']),
('Gradient maximum', np.max(abs(forces)), params['gradientmax']),
]
if on_sphere:
criteria.append(('Minimization on sphere', False))
else:
criteria.extend(
[
('Step RMS', Math.rms(step), params['steprms']),
('Step maximum', np.max(abs(step)), params['stepmax']),
]
)
log('Convergence criteria:')
all_matched = True
for crit in criteria:
if len(crit) > 2:
result = crit[1] < crit[2]
msg = '{:.3} {} {:.3}'.format(crit[1], '<' if result else '>', crit[2])
else:
msg, result = crit
msg = '{}: {}'.format(crit[0], msg) if msg else crit[0]
msg = '* {} => {}'.format(msg, 'OK' if result else 'no')
log(msg)
if not result:
all_matched = False
if all_matched:
log('* All criteria matched', level=1)
return all_matched