-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.py
218 lines (184 loc) · 7.29 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import torch
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import os
import cv2
picture_transformer = transforms.Compose([
transforms.ToPILImage(),
transforms.RandomResizedCrop(150),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
class dataset(Dataset):
def __init__(self, data, label):
self.data = data
self.label = label
def __getitem__(self, index):
data = picture_transformer(self.data[index])
return data, self.label[index]
def __len__(self):
return len(self.data)
class CNN(nn.Module):
def __init__(self, num_classes):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1)
self.conv2 = nn.Conv2d(16, 64, kernel_size=3, stride=2, padding=1)
self.conv3 = nn.Conv2d(64, 256, kernel_size=3, stride=2, padding=1)
self.conv4 = nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1)
self.conv5 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1)
self.fc1 = nn.Linear(512*1*1, 64)
self.fc2 = nn.Linear(64, num_classes)
self.maxpool = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, x): # x[3, 150, 150]
x = self.conv1(x) # x[3, 75, 75]
x = F.relu(x)
x = self.conv2(x) # x[3, 38, 38]
x = F.relu(x)
x = self.conv3(x) # x[3, 19, 19]
x = F.relu(x)
x = self.conv4(x) # x[3, 10, 10]
x = F.relu(x)
x = self.conv5(x) # x[3, 10, 10]
x = F.relu(x)
x = self.maxpool(x) # x[512, 1, 1]
x=x.view(-1, 512*1*1)
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
return F.log_softmax(x,dim=1)
class CNN_new(nn.Module):
def __init__(self, num_classes):
super(CNN_new, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1)
self.conv2 = nn.Conv2d(16, 64, kernel_size=3, stride=2, padding=1)
self.conv3 = nn.Conv2d(64, 256, kernel_size=3, stride=2, padding=1)
self.conv4 = nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1)
self.conv5 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1)
self.conv6 = nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1)
self.conv7 = nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1)
self.conv8 = nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1)
self.fc1 = nn.Linear(1024*1*1, 64)
self.fc2 = nn.Linear(64, num_classes)
self.maxpool = nn.AdaptiveAvgPool2d((1, 1))
self.f = nn.ReLU(inplace=True)
def forward(self, x): # x[3, 150, 150]
x = self.conv1(x) # x[3, 75, 75]
x = F.relu(x)
x = self.conv2(x) # x[3, 38, 38]
x = self.conv3(x)
x = F.relu(x)
x = self.conv4(x) # x[3, 19, 19]
x = self.conv5(x)
x = F.relu(x)
x = self.conv6(x) # x[3, 10, 10]
x = self.conv7(x)
x = F.relu(x)
x = self.conv8(x) # x[3, 10, 10]
x = F.relu(x)
x = self.maxpool(x) # x[512, 1, 1]
x=x.view(-1, 1024*1*1)
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
return F.log_softmax(x,dim=1)
def train(model, device, train_loader, optimizer, epoch):
model.train()
sun_loss = 0
index = 0
for idx, (data, lable) in enumerate(train_loader):
data, lable = data.to(device), lable.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, lable).to(device)
loss.backward()
optimizer.step()
sun_loss += loss.item()
index += 1
# if idx % 100 == 0:
# print('Train Epoch: {} [{}/{} ]\tLoss: {:.6f}'.format(epoch, idx, len(data), loss))
print('Train Epoch: {} \tLoss: {:.6f}'.format(epoch, sun_loss/index))
return sun_loss/index
def test(model, device, test_loader, len_test_data):
model.eval()
correct = 0
with torch.no_grad():
for data, lable in test_loader:
data, lable = data.to(device), lable.to(device)
output = model(data)
# red = output.max(1, keepdim=True)[1] # 找到概率最大的下标
pred=output.argmax(dim=1)#batch_size*2->batch_size*1
correct += pred.eq(lable.view_as(pred)).sum().item()
acc=correct/len_test_data
print("accuracy:{}".format(acc))
def load_data(file_path):
# 加载数据
array_of_img = []
for filename in os.listdir(file_path):
#print(filename) #just for test
#img is used to store the image data
img = cv2.imread(file_path + "/" + filename)
array_of_img.append(img)
return array_of_img
def load_test_data(file_path):
# 加载数据
array_of_img = []
lable = []
for filename in os.listdir(file_path):
#print(filename) #just for test
#img is used to store the image data
img = cv2.imread(file_path + "/" + filename)
array_of_img.append(img)
if "猫" in filename:
lable.append(0)
else:
lable.append(1)
return array_of_img, lable
if __name__ == '__main__':
# 参数设置
lr = 0.0005
epoch = 300
batch_size = 256
#判断是否使用GPU
device=torch.device("cuda:7" if torch.cuda.is_available() else "cpu" )
#加载数据
cats_data = load_data("/home/jcq/a-gz/Dataset/cats_and_dogs_v2/train/cats")
print("猫训练数据的大小:", len(cats_data), "第一张图片的大小:", cats_data[0].shape)
dogs_data = load_data("/home/jcq/a-gz/Dataset/cats_and_dogs_v2/train/dogs")
print("狗训练数据的大小:", len(dogs_data), "第一张图片的大小:", dogs_data[0].shape)
#构造标签
lables = []
for i in range(len(cats_data)):
lables.append(0)
for i in range(len(dogs_data)):
lables.append(1)
# 数据构造
sun_data = dataset(data=cats_data + dogs_data, label=lables)
train_data = DataLoader(dataset=sun_data, batch_size=batch_size, shuffle=True)
# 定义model
# model = CNN(num_classes=2)
model = CNN_new(num_classes=2)
model.to(device)
# 优化器
# optimizer=optim.Adam(model.parameters(),lr=lr)
optimizer = optim.AdamW(model.parameters(), lr=lr, betas=(0.9, 0.98), eps=1e-6,
weight_decay=1e-3)
loss = 1
for e in range(epoch):
loss_new = train(model=model, train_loader=train_data, optimizer=optimizer, device=device, epoch=e)
if loss_new == min(loss, loss_new) and e > 200:
torch.save(model.state_dict(), "/home/jcq/a-gz/me/net/cnn_model.pt")
loss = loss_new
#加载数据
test_data, test_lable = load_test_data("/home/jcq/a-gz/Dataset/cats_and_dogs_v2/test")
print("测试数据的大小:", len(test_data), "第一张图片的大小:", test_data[0].shape)
# 数据构造
te_data = dataset(data=test_data, label=test_lable)
test_dataset = DataLoader(dataset=te_data, batch_size=batch_size, shuffle=True)
test(model=model, test_loader=test_dataset, device=device,len_test_data=len(test_data))