forked from udacity/CarND-Vehicle-Detection
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlesson_functions.py
356 lines (307 loc) · 14.7 KB
/
lesson_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# -*- coding: utf-8 -*-
import glob
import time
import matplotlib.pyplot as plt
import numpy as np
from skimage.feature import hog
import cv2
DECISION_THRESH = 0.35
def color_convert(img, color_space='RGB'):
if color_space != 'RGB':
if color_space == 'HSV':
feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
elif color_space == 'LUV':
feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2LUV)
elif color_space == 'HLS':
feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
elif color_space == 'YUV':
feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2YUV)
elif color_space == 'YCrCb':
feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2YCrCb)
else:
feature_image = np.copy(img)
return feature_image
def get_hog_features(img, orient, pix_per_cell, cell_per_block,
vis=False, feature_vec=True):
"""
Extract hog features for given image
"""
# Call with two outputs if vis==True
if vis == True:
features, hog_image = hog(img, orientations=orient,
pixels_per_cell=(pix_per_cell, pix_per_cell),
block_norm='L2-Hys',
cells_per_block=(cell_per_block, cell_per_block),
transform_sqrt=True,
visualise=vis, feature_vector=feature_vec)
return features, hog_image
# Otherwise call with one output
else:
features = hog(img, orientations=orient,
pixels_per_cell=(pix_per_cell, pix_per_cell),
cells_per_block=(cell_per_block, cell_per_block),
block_norm='L2-Hys',
transform_sqrt=True,
visualise=vis, feature_vector=feature_vec)
return features
def bin_spatial(img, size=(32, 32)):
"""
Extracts spatial bin features for image with given size
"""
return cv2.resize(img, size).ravel()
def color_hist(img, nbins=32, bins_range=(0, 256)):
"""
Extract Color Histogram features for given image
Note: NEED TO CHANGE bins_range if reading .png files with mpimg!
"""
# Compute the histogram of the color channels separately
channel1_hist = np.histogram(img[:, :, 0], bins=nbins, range=bins_range)
channel2_hist = np.histogram(img[:, :, 1], bins=nbins, range=bins_range)
channel3_hist = np.histogram(img[:, :, 2], bins=nbins, range=bins_range)
# Concatenate the histograms into a single feature vector
hist_features = np.concatenate((channel1_hist[0], channel2_hist[0], channel3_hist[0]))
# Return the individual histograms, bin_centers and feature vector
return hist_features
def extract_features(imgs, color_space, spatial_size,
hist_bins, orient,
pix_per_cell, cell_per_block, hog_channel,
spatial_feat=True, hist_feat=True, hog_feat=True, augment=False):
"""
Extract features for all images given in list of image files
"""
# Create a list to append feature vectors to
features = []
# Iterate through the list of images
for imagefile in imgs:
image = cv2.imread(imagefile)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
file_features = single_img_features(image, color_space, spatial_size, hist_bins, orient, pix_per_cell,
cell_per_block, hog_channel, spatial_feat, hist_feat, hog_feat)
features.append(file_features)
if augment:
aug_image = cv2.flip(image, 1) # vertical flip
features.append(single_img_features(aug_image, color_space, spatial_size, hist_bins, orient, pix_per_cell,
cell_per_block, hog_channel, spatial_feat, hist_feat, hog_feat))
return features
def slide_window(img, x_start_stop=[None, None], y_start_stop=[None, None],
xy_window=(64, 64), xy_overlap=(0.5, 0.5)):
"""
Provides list of windows to be slide
"""
# If x and/or y start/stop positions not defined, set to image size
if x_start_stop[0] == None:
x_start_stop[0] = 0
if x_start_stop[1] == None:
x_start_stop[1] = img.shape[1]
if y_start_stop[0] == None:
y_start_stop[0] = 0
if y_start_stop[1] == None:
y_start_stop[1] = img.shape[0]
# Compute the span of the region to be searched
xspan = x_start_stop[1] - x_start_stop[0]
yspan = y_start_stop[1] - y_start_stop[0]
# Compute the number of pixels per step in x/y
nx_pix_per_step = np.int(xy_window[0]*(1 - xy_overlap[0]))
ny_pix_per_step = np.int(xy_window[1]*(1 - xy_overlap[1]))
# Compute the number of windows in x/y
nx_buffer = np.int(xy_window[0]*(xy_overlap[0]))
ny_buffer = np.int(xy_window[1]*(xy_overlap[1]))
nx_windows = np.int((xspan-nx_buffer)/nx_pix_per_step)
ny_windows = np.int((yspan-ny_buffer)/ny_pix_per_step)
# Initialize a list to append window positions to
window_list = []
# Loop through finding x and y window positions
# Note: you could vectorize this step, but in practice
# you'll be considering windows one by one with your
# classifier, so looping makes sense
for ys in range(ny_windows):
for xs in range(nx_windows):
# Calculate window position
startx = xs*nx_pix_per_step + x_start_stop[0]
endx = startx + xy_window[0]
starty = ys*ny_pix_per_step + y_start_stop[0]
endy = starty + xy_window[1]
# Append window position to list
window_list.append(((startx, starty), (endx, endy)))
# Return the list of windows
return window_list
def draw_boxes(img, bboxes, color=(0, 0, 255), thick=6):
"""
Draw bounding boxes
"""
# Make a copy of the image
imcopy = np.copy(img)
# Iterate through the bounding boxes
for bbox in bboxes:
# Draw a rectangle given bbox coordinates
cv2.rectangle(imcopy, bbox[0], bbox[1], color, thick)
# Return the image copy with boxes drawn
return imcopy
def single_img_features(img, color_space, spatial_size,
hist_bins, orient,
pix_per_cell, cell_per_block, hog_channel,
spatial_feat=True, hist_feat=True, hog_feat=True):
"""
Compute Features for given image
Steps:
1) Define an empty list to receive features
2) Apply color conversion if other than 'RGB'
3) Compute spatial features if flag is set
4) Append features to list
5) Compute histogram features if flag is set
6) Append features to list
7) Compute HOG features if flag is set
8) Append features to list
9) Return concatenated array of features
"""
img_features = []
feature_image = color_convert(img, color_space)
if spatial_feat == True:
spatial_features = bin_spatial(feature_image, size=spatial_size)
img_features.append(spatial_features)
if hist_feat == True:
hist_features = color_hist(feature_image, nbins=hist_bins)
img_features.append(hist_features)
if hog_feat == True:
if hog_channel == 'ALL':
hog_features = []
for channel in range(feature_image.shape[2]):
hog_features.extend(get_hog_features(feature_image[:, :, channel],
orient, pix_per_cell, cell_per_block,
vis=False, feature_vec=True))
hog_features = np.ravel(hog_features)
else:
hog_features = get_hog_features(feature_image[:, :, hog_channel], orient,
pix_per_cell, cell_per_block, vis=False, feature_vec=True)
img_features.append(hog_features)
return np.concatenate(img_features)
def search_windows(img, windows, clf, scaler, color_space='LUV', spatial_size=(32, 32),
hist_bins=32, hist_range=(0, 256), orient=9, pix_per_cell=8,
cell_per_block=2, hog_channel=0, spatial_feat=True,
hist_feat=True, hog_feat=True):
"""
Search over windows and classify does that contain car
Steps:
1) Create an empty list to receive positive detection windows
2) Iterate over all windows in the list
3) Extract the test window from original image
4) Extract features for that window using single_img_features()
5) Scale extracted features to be fed to classifier
6) Predict using your classifier
7) If positive (prediction == 1) then save the window
8) Return windows for positive detections
"""
on_windows = []
for window in windows:
test_img = cv2.resize(img[window[0][1]:window[1][1], window[0][0]:window[1][0]], (64, 64))
features = single_img_features(test_img, color_space=color_space,
spatial_size=spatial_size, hist_bins=hist_bins,
orient=orient, pix_per_cell=pix_per_cell,
cell_per_block=cell_per_block,
hog_channel=hog_channel, spatial_feat=spatial_feat,
hist_feat=hist_feat, hog_feat=hog_feat)
test_features = scaler.transform(np.array(features).reshape(1, -1))
confidence = clf.decision_function(test_features)
prediction = clf.predict(test_features)
if prediction == 1 and abs(confidence) > DECISION_THRESH:
on_windows.append(window)
return on_windows
def find_cars(img, ystart, ystop, scale, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins,
hog_channel, hog_feat, spatial_feat, hist_feat, color_space, step, boxcolor=(255, 0, 0)):
"""
Extract features using hog sub-sampling and make predictions
"""
draw_img = np.copy(img)
img = img.astype(np.float32)/255
img_tosearch = img[ystart:ystop, :, :]
ctrans_tosearch = color_convert(img_tosearch, color_space)
if scale != 1:
imshape = ctrans_tosearch.shape
ctrans_tosearch = cv2.resize(ctrans_tosearch, (np.int(imshape[1]/scale), np.int(imshape[0]/scale)))
ch1 = ctrans_tosearch[:, :, 0]
ch2 = ctrans_tosearch[:, :, 1]
ch3 = ctrans_tosearch[:, :, 2]
# Define blocks and steps as above
nxblocks = (ch1.shape[1] // pix_per_cell) - 1 #cell_per_block + 1
nyblocks = (ch1.shape[0] // pix_per_cell) - 1 #cell_per_block + 1
nfeat_per_block = orient*cell_per_block**2
# 64 was the orginal sampling rate, with 8 cells and 8 pix per cell
window = 64
nblocks_per_window = (window // pix_per_cell) - 1 # cell_per_block + 1
cells_per_step = int(step) # Instead of overlap, define how many cells to step
nxsteps = (nxblocks - nblocks_per_window) // cells_per_step #+ 1
nysteps = (nyblocks - nblocks_per_window) // cells_per_step #+ 1
# Compute individual channel HOG features for the entire image
hog1 = get_hog_features(ch1, orient, pix_per_cell, cell_per_block, feature_vec=False)
hog2 = get_hog_features(ch2, orient, pix_per_cell, cell_per_block, feature_vec=False)
hog3 = get_hog_features(ch3, orient, pix_per_cell, cell_per_block, feature_vec=False)
boxes = []
for xb in range(nxsteps):
for yb in range(nysteps):
ypos = yb*cells_per_step
xpos = xb*cells_per_step
# Extract HOG for this patch
hog_feat1 = hog1[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel()
hog_feat2 = hog2[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel()
hog_feat3 = hog3[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel()
hog_features = np.hstack((hog_feat1, hog_feat2, hog_feat3))
xleft = xpos*pix_per_cell
ytop = ypos*pix_per_cell
# Extract the image patch
subimg = cv2.resize(ctrans_tosearch[ytop:ytop+window, xleft:xleft+window], (64, 64))
# Get color features
spatial_features = bin_spatial(subimg, size=spatial_size)
hist_features = color_hist(subimg, nbins=hist_bins)
# Scale features and make a prediction
# test_features = X_scaler.transform(np.hstack(tuple(features)).reshape(1, -1))
test_features = X_scaler.transform(np.hstack((spatial_features, hist_features, hog_features)).reshape(1, -1))
#test_features = X_scaler.transform(np.hstack((shape_feat, hist_feat)).reshape(1, -1))
test_confidence = svc.decision_function(test_features)
test_prediction = svc.predict(test_features)
if test_prediction == 1 and abs(test_confidence) > DECISION_THRESH:
xbox_left = np.int(xleft*scale)
ytop_draw = np.int(ytop*scale)
win_draw = np.int(window*scale)
cv2.rectangle(draw_img, (xbox_left, ytop_draw+ystart), (xbox_left+win_draw, ytop_draw+win_draw+ystart), boxcolor, 6)
boxes.append(((xbox_left, ytop_draw+ystart), (xbox_left+win_draw, ytop_draw+win_draw+ystart)))
return draw_img, boxes
def draw_labeled_bboxes(img, labels):
"""
Draw bounding box based on minimal fit on car
"""
# Iterate through all detected cars
for car_number in range(1, labels[1]+1):
# Find pixels with each car_number label value
nonzero = (labels[0] == car_number).nonzero()
# Identify x and y values of those pixels
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Define a bounding box based on min/max x and y
bbox = ((np.min(nonzerox), np.min(nonzeroy)), (np.max(nonzerox), np.max(nonzeroy)))
# Draw the box on the image
cv2.rectangle(img, bbox[0], bbox[1], (0, 200, 155), 6)
x1, y1 = bbox[0]
(w, h), _ = cv2.getTextSize("car", cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2)
cv2.rectangle(img, (x1 - 2, y1 - h - 2), (x1 + w + 2, y1), (0, 200, 155), -1, cv2.LINE_AA)
cv2.putText(img, "car", (x1 + 2, y1 - 2), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2)
# Return the image
return img
def apply_threshold(heatmap, threshold):
"""
Apply threshold on heatmap
"""
# Zero out pixels below the threshold
heatmap[heatmap <= threshold] = 0
# Return thresholded map
return heatmap
def add_heat(heatmap, bbox_list):
"""
Generates Heat map for given box list
"""
# Iterate through list of bboxes
for box in bbox_list:
# Add += 1 for all pixels inside each bbox
# Assuming each "box" takes the form ((x1, y1), (x2, y2))
heatmap[box[0][1]:box[1][1], box[0][0]:box[1][0]] += 1
# Return updated heatmap
return heatmap