-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathattention_model.py
286 lines (242 loc) · 16.1 KB
/
attention_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
from keras.models import Sequential
from keras.layers.core import Dense, Activation, Dropout
from keras.layers.embeddings import Embedding
from keras.layers.normalization import BatchNormalization
from keras.layers import Input, Convolution1D, GlobalMaxPooling1D, GlobalAveragePooling1D, \
Lambda, TimeDistributed, SpatialDropout1D, Reshape, RepeatVector
from keras.layers.merge import Dot, Concatenate, Multiply, Add
from keras.models import Model
from keras import backend as K
from keras.initializers import RandomUniform
DSSM_NUM_NEGS = 5
ATTENTION_DEEP_LEVEL = 5
def keras_diagonal(x):
seq_len = 10 if 'seq_len' not in K.params else K.params['seq_len']
if seq_len != 10: print("dim of diagonal matrix in keras_diagonal: %d" % seq_len)
return K.sum(K.eye(seq_len) * x, axis=1)
def elementwise_prod(x, y):
(_, vec_size,) = K.int_shape(x)
attention_level = K.params['attention_level']
return x*y[:, attention_level, 0:vec_size]
def attention_weighting_prod(attention, weights):
attention_level = K.params['attention_level']
return attention * weights[:, attention_level, :, :]
def repeat_vector(x, rep, axis):
return K.repeat(x, rep, axis)
def max_pooling(x):
return K.max(x, axis=1)
def mean_pooling(x):
return K.mean(x, axis=1)
def max_pooling_with_mask(x, query_mask):
# x is batch_size * |doc| * |query|
# query_mask is batch_size * |query| (with masks as 0)
return K.max(x, axis=1) * query_mask
def mean_pooling_with_mask(x, doc_mask, query_mask):
# x is batch_size * |doc| * |query|
# doc_mask is batch_size * |doc| (with masks as 0)
# query_mask is batch_size * |query| (with masks as 0)
ZERO_SHIFT = 0.1
doc_mask_sum = (K.sum(doc_mask, axis=-1, keepdims=True) + ZERO_SHIFT)
return query_mask * K.batch_dot(x, doc_mask, axes=[1, 1]) / doc_mask_sum
def add_embed_layer(vocab_emb, vocab_size, embed_size, train_embed, dropout_rate):
emb_layer = Sequential()
if vocab_emb is not None:
print("Embedding with initialized weights")
print(vocab_size, embed_size)
emb_layer.add(Embedding(input_dim=vocab_size, output_dim=embed_size, weights=[vocab_emb],
trainable=train_embed, mask_zero=False))
else:
print("Embedding with random weights")
emb_layer.add(Embedding(input_dim=vocab_size, output_dim=embed_size, trainable=True, mask_zero=False,
embeddings_initializer=RandomUniform(-0.05, 0.05)))
emb_layer.add(SpatialDropout1D(dropout_rate))
return emb_layer
def add_conv_layer(input_list, layer_name, nb_filters, kernel_size, padding, dropout_rate=0.1,
activation='relu', strides=1, attention_level=0, conv_option="normal", prev_conv_tensors=None):
conv_layer = Convolution1D(filters=nb_filters, kernel_size=kernel_size, padding=padding,
activation=activation, strides=strides, name=layer_name)
max_pooling_layer = GlobalMaxPooling1D()
dropout_layer = Dropout(dropout_rate)
output_list, conv_output_list = [], []
for i in range(len(input_list)):
input = input_list[i]
conv_tensor = conv_layer(input)
if conv_option == "ResNet":
conv_tensor = Add()([conv_tensor, prev_conv_tensors[i][-1]])
dropout_tensor = dropout_layer(conv_tensor)
#conv_pooling_tensor = max_pooling_layer(conv_tensor)
output_list.append(dropout_tensor)
#conv_output_list.append(conv_pooling_tensor)
conv_output_list.append(conv_tensor)
return output_list, conv_output_list
def add_attention_layer(query_embedding, doc_embedding, layer_name, query_mask=None, doc_mask=None, mask=False):
dot_prod = Dot(axes=-1, name=layer_name)([doc_embedding, query_embedding])
norm_sim = Activation('softmax')(dot_prod)
if mask:
max_sim = Lambda(lambda x: max_pooling_with_mask(x[0], x[1]), output_shape=lambda inp_shp: (
inp_shp[0][0], inp_shp[0][2],))([norm_sim, query_mask])
mean_sim = Lambda(lambda x: mean_pooling_with_mask(x[0], x[1], x[2]), output_shape=lambda inp_shp: (
inp_shp[0][0], inp_shp[0][2],))([norm_sim, doc_mask, query_mask])
else:
max_sim = Lambda(max_pooling, output_shape=lambda inp_shp: (inp_shp[0], inp_shp[2], ))(norm_sim)
mean_sim = Lambda(mean_pooling, output_shape=lambda inp_shp: (inp_shp[0], inp_shp[2],))(norm_sim)
return norm_sim, max_sim, mean_sim
def add_attention_layer_with_query_weighting(query_embedding, doc_embedding, layer_name, attention_level,
query_weight, query_mask=None, doc_mask=None, mask=False):
"""
Dot -> softmax -> pooling -> (mask) -> weighting
"""
dot_prod = Dot(axes=-1, name=layer_name)([doc_embedding, query_embedding])
norm_sim = Activation('softmax')(dot_prod)
if mask:
max_sim = Lambda(lambda x: max_pooling_with_mask(x[0], x[1]), output_shape=lambda inp_shp: (
inp_shp[0][0], inp_shp[0][2],))([norm_sim, query_mask])
mean_sim = Lambda(lambda x: mean_pooling_with_mask(x[0], x[1], x[2]), output_shape=lambda inp_shp: (
inp_shp[0][0], inp_shp[0][2],))([norm_sim, doc_mask, query_mask])
else:
max_sim = Lambda(max_pooling, output_shape=lambda inp_shp: (inp_shp[0], inp_shp[2], ))(norm_sim)
mean_sim = Lambda(mean_pooling, output_shape=lambda inp_shp: (inp_shp[0], inp_shp[2],))(norm_sim)
if attention_level <= 1:
setattr(K, 'params', {'attention_level': attention_level})
max_sim = Lambda(lambda x: elementwise_prod(x[0], x[1]),
output_shape=lambda inp_shp: (inp_shp[0][0], inp_shp[0][1],))([max_sim, query_weight])
mean_sim = Lambda(lambda x: elementwise_prod(x[0], x[1]),
output_shape=lambda inp_shp: (inp_shp[0][0], inp_shp[0][1]))([mean_sim, query_weight])
return norm_sim, max_sim, mean_sim
# doc weighting is not tested yet, please use query weighting instead.
def add_attention_layer_with_doc_weighting(query_embedding, doc_embedding, layer_name, attention_level,
query_weight, doc_weight, max_query_len, max_doc_len,
query_mask=None, doc_mask=None, mask=False):
dot_prod = Dot(axes=-1, name=layer_name)([doc_embedding, query_embedding])
norm_sim = Activation('softmax')(dot_prod)
reshaped_query_weight = Reshape((ATTENTION_DEEP_LEVEL, max_query_len, 1),
input_shape=(ATTENTION_DEEP_LEVEL, max_query_len,))(query_weight)
repeated_query_weight = Lambda(lambda x: repeat_vector(x[0], x[1], x[2]), output_shape=lambda inp_shp:(
inp_shp[0][0], inp_shp[0][1], max_query_len, max_doc_len,))([reshaped_query_weight, max_doc_len, -1])
reshaped_doc_weight = Reshape((ATTENTION_DEEP_LEVEL, 1, max_doc_len),
input_shape=(ATTENTION_DEEP_LEVEL, max_doc_len,))(doc_weight)
repeated_doc_weight = Lambda(lambda x: repeat_vector(x[0], x[1], x[2]), output_shape=lambda inp_shp: (
inp_shp[0][0], inp_shp[0][1], max_query_len, max_doc_len,))([reshaped_doc_weight, max_query_len, -2])
weight_product = Multiply()([repeated_query_weight, repeated_doc_weight])
transformed_weight_product = Dense(max_doc_len, activation='relu')(weight_product)
setattr(K, 'params', {'attention_level': attention_level})
norm_sim = Lambda(lambda x: attention_weighting_prod(x[0], x[1]), output_shape=lambda inp_shp:(
inp_shp[0][0], inp_shp[0][1], inp_shp[0][2]))([norm_sim, transformed_weight_product])
if mask:
max_sim = Lambda(lambda x: max_pooling_with_mask(x[0], x[1]), output_shape=lambda inp_shp: (
inp_shp[0][0], inp_shp[0][2],))([norm_sim, query_mask])
mean_sim = Lambda(lambda x: mean_pooling_with_mask(x[0], x[1], x[2]), output_shape=lambda inp_shp: (
inp_shp[0][0], inp_shp[0][2],))([norm_sim, doc_mask, query_mask])
else:
max_sim = Lambda(max_pooling, output_shape=lambda inp_shp: (inp_shp[0], inp_shp[2], ))(norm_sim)
mean_sim = Lambda(mean_pooling, output_shape=lambda inp_shp: (inp_shp[0], inp_shp[2],))(norm_sim)
return norm_sim, max_sim, mean_sim
########################## Our model implementation #########################
def create_attention_model(max_query_len, max_doc_len, max_url_len, vocab_size, embedding_matrix, nb_filters,
embed_size=300, dropout_rate=0.1, trainable=True, weighting=False, mask=False,
conv_option="normal", model_option="complete"):
print('create attention model...')
model = Sequential()
query_word_input = Input(shape=(max_query_len['word'], ), name="query_word_input")
doc_word_input = Input(shape=(max_doc_len['word'],), name="doc_word_input")
query_char_input = Input(shape=(max_query_len['3gram'],), name="query_3gram_input")
doc_char_input = Input(shape=(max_doc_len['3gram'],), name="doc_3gram_input")
url_char_input = Input(shape=(max_url_len['url'],), name="url_3gram_input")
input_list = [query_word_input, doc_word_input, query_char_input, doc_char_input, url_char_input]
# Define Mask
query_word_mask, query_char_mask, doc_word_mask, doc_char_mask, url_char_mask = None, None, None, None, None
if mask:
query_word_mask = Input(shape=(max_query_len['word'], ), name="query_word_mask")
doc_word_mask = Input(shape=(max_doc_len['word'], ), name="doc_word_mask")
query_char_mask = Input(shape=(max_query_len['3gram'],), name="query_3gram_mask")
doc_char_mask = Input(shape=(max_doc_len['3gram'],), name="doc_3gram_mask")
url_char_mask = Input(shape=(max_url_len['url'],), name="url_3gram_mask")
input_list.extend([query_word_mask, doc_word_mask, query_char_mask, url_char_mask])
query_word_weight, query_char_weight, doc_word_weight, doc_char_weight, url_char_weight = None, None, None, None, None
if weighting == 'query':
query_word_weight = Input(shape=(ATTENTION_DEEP_LEVEL, max_query_len['word'], ), name="query_word_weight")
query_char_weight = Input(shape=(ATTENTION_DEEP_LEVEL, max_query_len['3gram'],), name="query_3gram_weight")
#external_feat = Input(shape=(2, ), name='overlap_feat')
input_list.extend([query_word_weight, query_char_weight])
#input_list.append(external_feat)
elif weighting == 'doc':
query_word_weight = Input(shape=(ATTENTION_DEEP_LEVEL, max_query_len['word'],), name="query_word_weight")
query_char_weight = Input(shape=(ATTENTION_DEEP_LEVEL, max_query_len['3gram'],), name="query_3gram_weight")
doc_word_weight = Input(shape=(ATTENTION_DEEP_LEVEL, max_doc_len['word'],), name="doc_word_weight")
doc_char_weight = Input(shape=(ATTENTION_DEEP_LEVEL, max_doc_len['3gram'],), name="doc_3gram_weight")
url_char_weight = Input(shape=(ATTENTION_DEEP_LEVEL, max_url_len['url'],), name="url_3gram_weight")
input_list.extend([query_word_weight, query_char_weight, doc_word_weight, doc_char_weight, url_char_weight])
char_weight_candidates = [doc_char_weight, url_char_weight]
# Create query-doc word-to-word attention layer
query_word_embedding_layer = add_embed_layer(embedding_matrix, vocab_size['word'], embed_size, trainable,
dropout_rate)
query_embedding = query_word_embedding_layer(query_word_input)
doc_embedding = query_word_embedding_layer(doc_word_input)
norm_sim_list, max_sim_list, mean_sim_list = [], [], []
conv_embedding_list = [[query_embedding], [doc_embedding]]
for i in range(ATTENTION_DEEP_LEVEL):
if i > 0:
output_list, conv_output_list = add_conv_layer([query_embedding, doc_embedding], "word-conv%d" % i,
nb_filters, 2, "same", dropout_rate, strides=1,
attention_level=i, conv_option=conv_option,
prev_conv_tensors=conv_embedding_list)
query_embedding, doc_embedding = output_list[0], output_list[1]
conv_embedding_list[0].append(conv_output_list[0])
conv_embedding_list[1].append(conv_output_list[1])
if weighting == 'query':
norm_sim, max_sim, mean_sim = add_attention_layer_with_query_weighting(
query_embedding, doc_embedding, "word-attention%d" % i, i, query_word_weight,
query_word_mask, doc_word_mask, mask)
elif weighting == 'doc':
norm_sim, max_sim, mean_sim = add_attention_layer_with_doc_weighting(
query_embedding, doc_embedding, "word-attention%d" % i, i, query_word_weight, doc_word_weight,
max_query_len['word'], max_doc_len['word'], query_word_mask, doc_word_mask, mask)
norm_sim_list.append(norm_sim)
max_sim_list.append(max_sim)
mean_sim_list.append(mean_sim)
# Create query-doc char-to-char attention layer
char_embedding_layer = add_embed_layer(None, vocab_size['char'], embed_size, True, dropout_rate)
query_char_embedding_layer = url_char_embedding_layer = doc_char_embedding_layer = char_embedding_layer
doc_char_embedding = doc_char_embedding_layer(doc_char_input)
url_char_embedding = url_char_embedding_layer(url_char_input)
char_embedding_candidates = [doc_char_embedding, url_char_embedding]
char_mask_candidates = [doc_char_mask, url_char_mask]
max_doc_len_candidates = [max_doc_len["3gram"], max_url_len["url"]]
j = 0
for char_embedding, char_mask, char_weight, max_doc_len_tmp in zip(char_embedding_candidates, char_mask_candidates,
char_weight_candidates, max_doc_len_candidates):
query_embedding = query_char_embedding_layer(query_char_input)
conv_embedding_list = [[query_embedding], [char_embedding]]
setattr(K, 'params', {'max_doc_len': max_doc_len_tmp, 'max_query_len': max_query_len['3gram']})
for i in range(ATTENTION_DEEP_LEVEL):
if i > 0:
output_list, conv_output_list = add_conv_layer([query_embedding, char_embedding], "3gram-conv%d" % j,
nb_filters, 4, "same", dropout_rate, strides=1,
attention_level=i, conv_option=conv_option,
prev_conv_tensors=conv_embedding_list)
query_embedding, char_embedding = output_list[0], output_list[1]
conv_embedding_list[0].append(conv_output_list[0])
conv_embedding_list[1].append(conv_output_list[1])
if weighting == 'query':
norm_sim2, max_sim2, mean_sim2 = add_attention_layer_with_query_weighting(
query_embedding, char_embedding, "url-attention%d" % j, i, query_char_weight,
query_char_mask, char_mask, mask)
elif weighting == 'doc':
norm_sim2, max_sim2, mean_sim2 = add_attention_layer_with_doc_weighting(
query_embedding, char_embedding, "url-attention%d" % j, i, query_char_weight, char_weight,
max_query_len['3gram'], max_url_len['url'], query_char_mask, char_mask, mask)
else:
norm_sim2, max_sim2, mean_sim2 = add_attention_layer(query_embedding, char_embedding, "url-attention%d" % j,
query_char_mask, char_mask, mask)
norm_sim_list.append(norm_sim2)
max_sim_list.append(max_sim2)
mean_sim_list.append(mean_sim2)
j += 1
max_sim_list.extend(mean_sim_list)
feature_vector = Concatenate(axis=-1, name="feature_vector")(max_sim_list)
#if weighting:
# feature_vector = Concatenate(axis=-1, name="external_feature_vector")([feature_vector, external_feat])
feature_vector1 = Dense(150, activation='relu', name="feature_vector1")(feature_vector)
feature_vector2 = Dense(50, activation='relu', name="feature_vector2")(feature_vector1)
prediction = Dense(1, activation='sigmoid', name="prediction")(feature_vector2)
return Model(input_list, [prediction])