-
Notifications
You must be signed in to change notification settings - Fork 75
/
Copy pathexample4TeContinuousDataKraskov.m
executable file
·60 lines (54 loc) · 2.99 KB
/
example4TeContinuousDataKraskov.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
%%
%% Java Information Dynamics Toolkit (JIDT)
%% Copyright (C) 2012, Joseph T. Lizier
%%
%% This program is free software: you can redistribute it and/or modify
%% it under the terms of the GNU General Public License as published by
%% the Free Software Foundation, either version 3 of the License, or
%% (at your option) any later version.
%%
%% This program is distributed in the hope that it will be useful,
%% but WITHOUT ANY WARRANTY; without even the implied warranty of
%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
%% GNU General Public License for more details.
%%
%% You should have received a copy of the GNU General Public License
%% along with this program. If not, see <http://www.gnu.org/licenses/>.
%%
% = Example 4 - Transfer entropy on continuous data using Kraskov estimators =
% Simple transfer entropy (TE) calculation on continuous-valued data using the Kraskov-estimator TE calculator.
% Change location of jar to match yours:
javaaddpath('../../infodynamics.jar');
% Generate some random normalised data.
numObservations = 1000;
covariance=0.4;
sourceArray=randn(numObservations, 1);
destArray = [0; covariance*sourceArray(1:numObservations-1) + (1-covariance)*randn(numObservations - 1, 1)];
sourceArray2=randn(numObservations, 1); % Uncorrelated source
% Create a TE calculator and run it:
teCalc=javaObject('infodynamics.measures.continuous.kraskov.TransferEntropyCalculatorKraskov');
teCalc.setProperty('k', '4'); % Use Kraskov parameter K=4 for 4 nearest points
teCalc.initialise(1); % Use history length 1 (Schreiber k=1)
% Perform calculation with correlated source:
teCalc.setObservations(sourceArray, destArray);
result = teCalc.computeAverageLocalOfObservations();
% Note that the calculation is a random variable (because the generated
% data is a set of random variables) - the result will be of the order
% of what we expect, but not exactly equal to it; in fact, there will
% be a large variance around it.
% Expected correlation is expected covariance / product of expected standard deviations:
% (where square of destArray standard dev is sum of squares of std devs of
% underlying distributions)
corr_expected = covariance ./ (1 * sqrt(covariance^2 + (1-covariance)^2));
fprintf('TE result %.4f nats; expected to be close to %.4f nats for these correlated Gaussians\n', ...
result, - 0.5 * log(1-corr_expected^2));
% Perform calculation with uncorrelated source:
teCalc.initialise(); % Initialise leaving the parameters the same
teCalc.setObservations(sourceArray2, destArray);
result2 = teCalc.computeAverageLocalOfObservations();
fprintf('TE result %.4f nats; expected to be close to 0 nats for these uncorrelated Gaussians\n', result2);
% We can also compute the local TE values for the time-series samples here:
% (See more about utility of local TE in the CA demos)
localTE = teCalc.computeLocalOfPreviousObservations();
fprintf('Notice that the mean of locals, %.4f nats, equals the previous result\n', ...
sum(javaMatrixToOctave(localTE))/(numObservations-1));