You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* Add ONNX segmentation and embedding models
* Minor readability improvements
* Replace onnxruntime with onnxruntime-gpu
* ONNX can have only one output
* Clean up useless embedding model subclasses
* Remove duration and sample_rate properties from SegmentationModel. Clean up code
* Update README
If you have an ONNX model, you can use `from_onnx()`:
157
+
158
+
```python
159
+
from diart.models import EmbeddingModel
160
+
161
+
embedding = EmbeddingModel.from_onnx(
162
+
model_path="my_model.ckpt",
163
+
input_names=["x", "w"], # defaults to ["waveform", "weights"]
164
+
output_name="output", # defaults to "embedding"
165
+
)
166
+
```
167
+
175
168
## 📈 Tune hyper-parameters
176
169
177
170
Diart implements an optimizer based on [optuna](https://optuna.readthedocs.io/en/stable/index.html) that allows you to tune pipeline hyper-parameters to your needs.
@@ -352,11 +345,11 @@ from diart.models import SegmentationModel
0 commit comments