Skip to content

[Nonlinear] improve test coverage #2641

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 19, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions .codecov.yml
Original file line number Diff line number Diff line change
@@ -1 +1,3 @@
comment: false
ignore:
- 'src/Nonlinear/univariate_expressions_generator.jl'
76 changes: 76 additions & 0 deletions test/Nonlinear/Nonlinear.jl
Original file line number Diff line number Diff line change
Expand Up @@ -880,6 +880,18 @@ function test_evaluate_subexpressions()
return
end

function test_evaluate_manny_arguments()
model = MOI.Nonlinear.Model()
x = MOI.VariableIndex.(1:20)
v = Dict(xi => xi.value for xi in x)
expr = MOI.Nonlinear.add_expression(
model,
Expr(:call, :+, [:(sqrt($(x[i]))) for i in 1:20]...),
)
@test Nonlinear.evaluate(v, model, expr) ≈ sum(sqrt(i) for i in 1:20)
return
end

function test_NLPBlockData()
model = Nonlinear.Model()
x = MOI.VariableIndex(1)
Expand Down Expand Up @@ -1251,6 +1263,70 @@ function test_univariate_sign()
end
end

function test_show_Model()
model = MOI.Nonlinear.Model()
@test sprint(show, model) ==
"A Nonlinear.Model with:\n 0 objectives\n 0 parameters\n 0 expressions\n 0 constraints"
p = MOI.Nonlinear.add_parameter(model, 2.0)
@test sprint(show, model) ==
"A Nonlinear.Model with:\n 0 objectives\n 1 parameter\n 0 expressions\n 0 constraints"
return
end

function test_set_objective_nothing()
model = MOI.Nonlinear.Model()
x = MOI.VariableIndex(1)
MOI.Nonlinear.set_objective(model, :(sin($x)))
@test sprint(show, model) ==
"A Nonlinear.Model with:\n 1 objective\n 0 parameters\n 0 expressions\n 0 constraints"
MOI.Nonlinear.set_objective(model, nothing)
@test sprint(show, model) ==
"A Nonlinear.Model with:\n 0 objectives\n 0 parameters\n 0 expressions\n 0 constraints"
return
end

function test_copy_evaluator()
model = Nonlinear.Model()
x = MOI.VariableIndex(1)
evaluator = Nonlinear.Evaluator(model, Nonlinear.ExprGraphOnly(), [x])
@test_throws(
ErrorException("Copying nonlinear problems not yet implemented"),
copy(evaluator),
)
return
end

function test_no_objective()
model = Nonlinear.Model()
x = MOI.VariableIndex(1)
evaluator = Nonlinear.Evaluator(model, Nonlinear.ExprGraphOnly(), [x])
@test_throws(
ErrorException(
"Unable to query objective_expr because no nonlinear objective was set",
),
MOI.objective_expr(evaluator),
)
return
end

function test_convert_to_expr()
model = Nonlinear.Model()
x = MOI.VariableIndex(1)
expr = MOI.Nonlinear.add_expression(model, :(sin($x)))
evaluator = Nonlinear.Evaluator(model, Nonlinear.ExprGraphOnly(), [x])
@test MOI.Nonlinear.convert_to_expr(
evaluator,
model[expr];
moi_output_format = true,
) == :(sin(x[$x]))
@test MOI.Nonlinear.convert_to_expr(
evaluator,
model[expr];
moi_output_format = false,
) == :(sin($x))
return
end

end # TestNonlinear

TestNonlinear.runtests()
Expand Down
81 changes: 81 additions & 0 deletions test/Nonlinear/ReverseAD.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1152,6 +1152,87 @@ function test_univariate_operator_with_no_second_order()
return
end

function test_no_objective()
model = Nonlinear.Model()
x = MOI.VariableIndex(1)
evaluator = Nonlinear.Evaluator(model, Nonlinear.SparseReverseMode(), [x])
MOI.initialize(evaluator, [:Grad])
@test_throws(
ErrorException("No nonlinear objective."),
MOI.eval_objective(evaluator, [1.0]),
)
g = [0.0]
@test_throws(
ErrorException("No nonlinear objective."),
MOI.eval_objective_gradient(evaluator, g, [1.0]),
)
return
end

function test_x_power_1()
model = Nonlinear.Model()
x = MOI.VariableIndex(1)
MOI.Nonlinear.set_objective(model, :($x^1))
evaluator = Nonlinear.Evaluator(model, Nonlinear.SparseReverseMode(), [x])
MOI.initialize(evaluator, [:Grad, :Hess])
@test MOI.eval_objective(evaluator, [2.0]) ≈ 2.0
H = [NaN]
MOI.eval_hessian_lagrangian(evaluator, H, [2.0], 1.5, Float64[])
@test H == [0.0]
return
end

function test_variable_first_node_in_tape()
model = Nonlinear.Model()
x = MOI.VariableIndex(1)
expr = MOI.Nonlinear.add_expression(model, :($x))
MOI.Nonlinear.set_objective(model, :(sin($expr)))
evaluator = Nonlinear.Evaluator(model, Nonlinear.SparseReverseMode(), [x])
MOI.initialize(evaluator, [:Grad, :Jac, :Hess])
H = [NaN]
MOI.eval_hessian_lagrangian(evaluator, H, [2.0], 1.5, [])
@test H ≈ [-1.5 * sin(2.0)]
return
end

function test_subexpression_first_node_in_tape()
model = Nonlinear.Model()
x = MOI.VariableIndex(1)
expr = MOI.Nonlinear.add_expression(model, :($x))
expr2 = MOI.Nonlinear.add_expression(model, :($expr))
MOI.Nonlinear.set_objective(model, :(sin($expr2)))
evaluator = Nonlinear.Evaluator(model, Nonlinear.SparseReverseMode(), [x])
MOI.initialize(evaluator, [:Grad, :Jac, :Hess])
H = [NaN]
MOI.eval_hessian_lagrangian(evaluator, H, [2.0], 1.5, [])
@test H ≈ [-1.5 * sin(2.0)]
return
end

function test_parameter_in_hessian()
model = Nonlinear.Model()
x = MOI.VariableIndex(1)
p = MOI.Nonlinear.add_parameter(model, 3.0)
MOI.Nonlinear.set_objective(model, :(sin($x + $p)))
evaluator = Nonlinear.Evaluator(model, Nonlinear.SparseReverseMode(), [x])
MOI.initialize(evaluator, [:Grad, :Jac, :Hess])
H = [NaN]
MOI.eval_hessian_lagrangian(evaluator, H, [2.0], 1.5, [])
@test H ≈ [-1.5 * sin(2.0 + 3.0)]
return
end

function test_unsafe_vector_view()
x = Float64[]
GC.@preserve x begin
view = MOI.Nonlinear.ReverseAD._UnsafeVectorView(x, 3)
@test length(x) == 3
view[2] = 1.0
@test x[2] == 1.0
end
return
end

end # module

TestReverseAD.runtests()
Loading