Skip to content

Use StarAlgebras.QuadraticForm #391

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 13 commits into from
Apr 19, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 0 additions & 12 deletions docs/src/tutorials/Symmetry/cyclic.jl
Original file line number Diff line number Diff line change
Expand Up @@ -90,18 +90,6 @@ model = Model(solver)
@variable(model, t)
@objective(model, Max, t)
pattern = Symmetry.Pattern(G, action)
basis = MB.explicit_basis(MB.algebra_element(poly - t))
using SymbolicWedderburn
summands = SymbolicWedderburn.symmetry_adapted_basis(
Float64,
pattern.group,
pattern.action,
basis,
semisimple = true,
)

gram_basis = SumOfSquares.Certificate.Symmetry._gram_basis(pattern, basis, Float64)

con_ref = @constraint(model, poly - t in SOSCone(), symmetry = pattern)
optimize!(model)
@test termination_status(model) == MOI.OPTIMAL #src
Expand Down
7 changes: 5 additions & 2 deletions src/Bridges/Constraint/sos_polynomial_in_semialgebraic_set.jl
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,8 @@ function MOI.Bridges.Constraint.bridge_constraint(
λ_constraints = UMCT[]
preprocessed =
Certificate.preprocessed_domain(set.certificate, set.domain, p)
implicit_basis = MB.implicit_basis(set.basis)
cache = zero(MOI.ScalarAffineFunction{T}, MB.algebra(implicit_basis))
for index in Certificate.preorder_indices(set.certificate, preprocessed)
λ, λ_variable, λ_constraint, λ_basis = lagrangian_multiplier(
model,
Expand All @@ -79,14 +81,15 @@ function MOI.Bridges.Constraint.bridge_constraint(
# `Float64` when used with JuMP and the coefficient type is often `Int` if
# `set.domain.V` is `FullSpace` or `FixedPolynomialSet`.
g = Certificate.generator(set.certificate, index, preprocessed)
MA.operate_to!(cache, +, λ)
# TODO replace with `MA.sub_mul` when it works.
p = MA.operate!(
SA.UnsafeAddMul(*),
p,
λ,
cache,
MB.algebra_element(
MB.sparse_coefficients(-one(T) * similar(g, T)),
MB.FullBasis{MB.Monomial,MP.monomial_type(g)}(),
implicit_basis,
),
)
end
Expand Down
10 changes: 5 additions & 5 deletions src/Bridges/Variable/kernel.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,15 +12,15 @@ function MOI.Bridges.Variable.bridge_constrained_variable(
) where {T,M}
variables = Vector{MOI.VariableIndex}[]
constraints = MOI.ConstraintIndex{MOI.VectorOfVariables}[]
acc = zero(
MOI.ScalarAffineFunction{T},
MB.algebra(MB.implicit_basis(set.basis)),
)
algebra = MB.algebra(MB.implicit_basis(set.basis))
acc = zero(MOI.ScalarAffineFunction{T}, algebra)
cache = zero(MOI.ScalarAffineFunction{T}, algebra)
for (gram_basis, weight) in zip(set.gram_bases, set.weights)
gram, vars, con = SOS.add_gram_matrix(model, M, gram_basis, T)
push!(variables, vars)
push!(constraints, con)
MA.operate!(SA.UnsafeAddMul(*), acc, gram, weight)
MA.operate_to!(cache, +, gram)
MA.operate!(SA.UnsafeAddMul(*), acc, cache, weight)
end
MA.operate!(SA.canonical, SA.coeffs(acc))
return KernelBridge{T,M}(
Expand Down
9 changes: 5 additions & 4 deletions src/Certificate/ideal.jl
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@ function _combine_with_gram(
weights,
) where {B,M}
p = zero(_NonZero, MB.algebra(MB.FullBasis{B,M}()))
cache = zero(_NonZero, MB.algebra(MB.FullBasis{B,M}()))
for mono in basis
MA.operate!(
SA.UnsafeAddMul(*),
Expand All @@ -29,12 +30,12 @@ function _combine_with_gram(
)
end
for (gram, weight) in zip(gram_bases, weights)
MA.operate!(
SA.UnsafeAddMul(*),
p,
MA.operate_to!(
cache,
+,
GramMatrix{_NonZero}((_, _) -> _NonZero(), gram),
weight,
)
MA.operate!(SA.UnsafeAddMul(*), p, cache, weight)
end
MA.operate!(SA.canonical, SA.coeffs(p))
return MB.SubBasis{B}(keys(SA.coeffs(p)))
Expand Down
73 changes: 32 additions & 41 deletions src/Certificate/newton_polytope.jl
Original file line number Diff line number Diff line change
Expand Up @@ -567,6 +567,9 @@ Base.copy(s::SignChange) = s
Base.iszero(::SignChange) = false
MA.scaling_convert(::Type, s::SignChange) = s
Base.:*(s::SignChange, α::Real) = SignChange(s.sign * α, s.Δ)
Base.:*(α::Real, s::SignChange) = SignChange(α * s.sign, s.Δ)
#Base.convert(::Type{SignChange{T}}, s::SignChange) where {T} = SignChange{T}(s.sign, s.Δ)
#Base.:+(a::SignChange, b::SignChange) = convert(SignCount, a) + b

struct SignCount
unknown::Int
Expand All @@ -586,6 +589,9 @@ function _sign(c::SignCount)
return missing
end
end
function Base.show(io::IO, c::SignCount)
return print(io, "[$(c.unknown)|$(c.positive)|$(c.negative)]")
end

function Base.:*(α, a::SignCount)
if α > 0
Expand Down Expand Up @@ -630,26 +636,16 @@ end

Base.convert(::Type{SignCount}, Δ::SignChange) = SignCount() + Δ

function increase(cache, counter, generator_sign, monos, mult)
for a in monos
for b in monos
MA.operate_to!(
cache,
*,
MB.algebra_element(mult),
MB.algebra_element(a),
MB.algebra_element(b),
)
MA.operate!(
SA.UnsafeAddMul(*),
counter,
_term_constant_monomial(
SignChange((a != b) ? missing : generator_sign, 1),
mult,
),
cache,
)
end
struct SignGram{T,B}
sign::T
basis::B
end
SA.basis(g::SignGram) = g.basis
function Base.getindex(g::SignGram, i, j)
if i == j
return SignChange(g.sign, 1)
else
return SignChange(missing, 1)
end
end

Expand Down Expand Up @@ -715,38 +711,33 @@ function post_filter(
_DictCoefficients(Dict{MP.monomial_type(typeof(poly)),SignCount}()),
MB.implicit_basis(SA.basis(poly)),
)
algebra = MB.algebra(MB.implicit_basis(SA.basis(poly)))
cache = zero(Float64, algebra)
cache3 = zero(SignCount, algebra)
cache4 = zero(SignCount, algebra)
cache = zero(SignCount, MB.algebra(MB.implicit_basis(SA.basis(poly))))
cache2 = zero(SignCount, MB.algebra(MB.implicit_basis(SA.basis(poly))))
for (mono, v) in SA.nonzero_pairs(SA.coeffs(poly))
MA.operate!(
SA.UnsafeAddMul(*),
SA.UnsafeAdd(),
counter,
_term(SignChange(_sign(v), 1), SA.basis(poly)[mono]),
)
end
for (mult, gram_monos) in zip(generators, multipliers_gram_monos)
for (mono, v) in SA.nonzero_pairs(SA.coeffs(mult))
increase(
cache,
counter,
-_sign(v),
gram_monos,
SA.basis(mult)[mono],
)
end
MA.operate_to!(
cache,
+,
SA.QuadraticForm{SA.star}(SignGram(-1, gram_monos)),
)
MA.operate!(SA.UnsafeAddMul(*), counter, mult, cache)
end
function decrease(sign, a, b, generator)
MA.operate_to!(
cache3,
cache,
*,
_term(SignChange(sign, -1), a),
MB.algebra_element(b),
)
MA.operate_to!(cache4, *, cache3, generator)
MA.operate!(SA.UnsafeAddMul(*), counter, cache4)
for mono in SA.supp(cache4)
MA.operate_to!(cache2, *, cache, generator)
MA.operate!(SA.UnsafeAdd(), counter, cache2)
for mono in SA.supp(cache2)
count = SA.coeffs(counter)[SA.basis(counter)[mono]]
count_sign = _sign(count)
# This means the `counter` has a sign and it didn't have a sign before
Expand Down Expand Up @@ -781,16 +772,16 @@ function post_filter(
for i in eachindex(generators)
for (j, mono) in enumerate(multipliers_gram_monos[i])
MA.operate_to!(
cache3,
cache,
*,
# Dummy coef to help convert to `SignCount` which is the `eltype` of `cache`
_term(SignChange(1, 1), mono),
MB.algebra_element(mono),
)
# The `eltype` of `cache` is `SignCount`
# so there is no risk of term cancellation
MA.operate_to!(cache4, *, cache3, generators[i])
for w in SA.supp(cache4)
MA.operate_to!(cache2, *, cache, generators[i])
for w in SA.supp(cache2)
if ismissing(_sign(SA.coeffs(counter)[SA.basis(counter)[w]]))
push!(get!(back, w, Tuple{Int,Int}[]), (i, j))
else
Expand Down
118 changes: 48 additions & 70 deletions src/gram_matrix.jl
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,7 @@ function MP.similar_type(
return GramMatrix{S,B,US,MS}
end

SA.basis(g::GramMatrix) = g.basis
MB.implicit_basis(g::GramMatrix) = MB.implicit_basis(g.basis)

# When taking the promotion of a GramMatrix of JuMP.Variable with a Polynomial JuMP.Variable, it should be a Polynomial of AffExpr
Expand Down Expand Up @@ -137,76 +138,13 @@ function GramMatrix(Q::AbstractMatrix, monos::AbstractVector)
return GramMatrix(Q, MB.SubBasis{MB.Monomial}(sorted_monos), σ)
end

# `_gram_operate!` is a temporary workaround waiting for a cleaner solution
# in https://github.com/JuliaAlgebra/StarAlgebras.jl/pull/62

function _gram_operate!(
op,
p,
α,
row::MB.Polynomial,
col::MB.Polynomial,
args::Vararg{Any,N},
) where {N}
return MA.operate!(
op,
p,
MB.term_element(true, row), # TODO `*` shouldn't be defined for group elements so this is a hack
MB.term_element(α, col),
args...,
)
end

function _gram_operate!(
op,
p,
α,
row::SA.AlgebraElement,
col::SA.AlgebraElement,
args::Vararg{Any,N},
) where {N}
return MA.operate!(
op,
p,
true * row, # TODO `*` shouldn't be defined for group elements so this is a hack
α * col,
args...,
)
end

function _gram_operate!(
op,
p,
α,
row::MB.SemisimpleElement,
col::MB.SemisimpleElement,
args::Vararg{Any,N},
) where {N}
for (r, c) in zip(row.elements, col.elements)
_gram_operate!(op, p, α, r, c, args...)
end
end

function MA.operate!(
op::SA.UnsafeAddMul{typeof(*)},
p::SA.AlgebraElement,
g::GramMatrix,
args::Vararg{Any,N},
) where {N}
for row in eachindex(g.basis)
row_star = SA.star(g.basis[row])
for col in eachindex(g.basis)
_gram_operate!(
op,
p,
g.Q[row, col],
row_star,
g.basis[col],
args...,
)
end
end
return p
return MA.operate!(op, p, SA.QuadraticForm{SA.star}(g), args...)
end

"""
Expand Down Expand Up @@ -320,6 +258,51 @@ end
# convert(PT, MP.polynomial(p))
#end

function MA.operate_to!(a::SA.AlgebraElement, ::typeof(+), g::GramMatrix)
return MA.operate_to!(a, +, SA.QuadraticForm{SA.star}(g))
end

function MA.operate!(op::SA.UnsafeAdd, a::SA.AlgebraElement, g::GramMatrix)
return MA.operate!(op, a, SA.QuadraticForm{SA.star}(g))
end

function MA.operate!(
op::SA.UnsafeAdd,
a::SA.AlgebraElement,
g::BlockDiagonalGramMatrix,
)
for block in g.blocks
MA.operate!(op, a, block)
end
return a
end

function MA.operate_to!(
a::SA.AlgebraElement,
::typeof(+),
g::BlockDiagonalGramMatrix,
)
MA.operate!(zero, a)
MA.operate!(SA.UnsafeAdd(), a, g)
MA.operate!(SA.canonical, a)
return a
end

function MB.algebra_element(
p::Union{GramMatrix{T,B,U},BlockDiagonalGramMatrix{T,B,U}},
) where {T,B,U}
return MB.algebra_element(p, U)
end

function MB.algebra_element(
g::Union{GramMatrix,BlockDiagonalGramMatrix},
::Type{T},
) where {T}
a = zero(T, MB.algebra(MB.implicit_basis(g)))
MA.operate_to!(a, +, g)
return a
end

function MP.polynomial(
p::Union{GramMatrix{T,B,U},BlockDiagonalGramMatrix{T,B,U}},
) where {T,B,U}
Expand All @@ -330,10 +313,5 @@ function MP.polynomial(
g::Union{GramMatrix,BlockDiagonalGramMatrix},
::Type{T},
) where {T}
p = zero(T, MB.algebra(MB.implicit_basis(g)))
MA.operate!(SA.UnsafeAddMul(*), p, g)
MA.operate!(SA.canonical, SA.coeffs(p))
return MP.polynomial(
SA.coeffs(p, MB.FullBasis{MB.Monomial,MP.monomial_type(g)}()),
)
return MP.polynomial(MB.algebra_element(g, T))
end
Loading