forked from johnsmith0031/alpaca_lora_4bit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharg_parser.py
256 lines (240 loc) · 8.39 KB
/
arg_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import argparse
from Finetune4bConfig import Finetune4bConfig
def parse_commandline():
parser = argparse.ArgumentParser(
prog=__file__.split(os.path.sep)[-1],
description="Produce LoRA in 4bit training",
usage="%(prog)s [config] [training]\n\nAll arguments are optional",
)
parser.add_argument(
"dataset",
nargs="?",
default="./dataset.json",
help="Path to dataset file. Default: %(default)s",
)
parser_config = parser.add_argument_group("config")
parser_training = parser.add_argument_group("training")
# Config args group
parser_config.add_argument(
"--ds_type",
choices=["shot", "txt", "alpaca", "gpt4all", "bluemoon"],
default="alpaca",
required=False,
help="Dataset structure format. Default: %(default)s",
)
parser_config.add_argument(
"--lora_out_dir",
default="alpaca_lora",
required=False,
help="Directory to place new LoRA. Default: %(default)s",
)
parser_config.add_argument(
"--lora_apply_dir",
default=None,
required=False,
help="Path to directory from which LoRA has to be applied before training. Default: %(default)s",
)
parser_training.add_argument(
"--resume_checkpoint",
default=None,
required=False,
help="Resume training from specified checkpoint. Default: %(default)s",
)
parser_config.add_argument(
"--llama_q4_config_dir",
default="./llama-13b-4bit/",
required=False,
help="Path to the config.json, tokenizer_config.json, etc. Default: %(default)s",
)
parser_config.add_argument(
"--llama_q4_model",
default="./llama-13b-4bit.pt",
required=False,
help="Path to the quantized model in huggingface format. Default: %(default)s",
)
# Training args group
parser_training.add_argument(
"--mbatch_size",
default=1,
type=int,
help="Micro-batch size. Default: %(default)s",
)
parser_training.add_argument(
"--batch_size", default=2, type=int, help="Batch size. Default: %(default)s"
)
parser_training.add_argument(
"--epochs", default=3, type=int, help="Epochs. Default: %(default)s"
)
parser_training.add_argument(
"--lr", default=2e-4, type=float, help="Learning rate. Default: %(default)s"
)
parser_training.add_argument(
"--cutoff_len", default=256, type=int, help="Default: %(default)s"
)
parser_training.add_argument(
"--lora_r", default=8, type=int, help="Default: %(default)s"
)
parser_training.add_argument(
"--lora_alpha", default=16, type=int, help="Default: %(default)s"
)
parser_training.add_argument(
"--lora_dropout", default=0.05, type=float, help="Default: %(default)s"
)
parser_training.add_argument(
"--grad_chckpt",
action="store_true",
required=False,
help="Use gradient checkpoint. For 30B model. Default: %(default)s",
)
parser_training.add_argument(
"--grad_chckpt_ratio",
default=1,
type=float,
help="Gradient checkpoint ratio. Default: %(default)s",
)
parser_training.add_argument(
"--val_set_size",
default=0.2,
type=float,
help="Validation set size. Default: %(default)s",
)
parser_training.add_argument(
"--warmup_steps", default=50, type=int, help="Default: %(default)s"
)
parser_training.add_argument(
"--save_steps", default=50, type=int, help="Default: %(default)s"
)
parser_training.add_argument(
"--save_total_limit", default=3, type=int, help="Default: %(default)s"
)
parser_training.add_argument(
"--logging_steps", default=10, type=int, help="Default: %(default)s"
)
parser_training.add_argument(
"-c",
"--checkpoint",
action="store_true",
help="Produce checkpoint instead of LoRA. Default: %(default)s",
)
parser_training.add_argument(
"--skip",
action="store_true",
help="Don't train model. Can be useful to produce checkpoint from existing LoRA. Default: %(default)s",
)
parser_training.add_argument(
"--verbose",
action="store_true",
help="If output log of training. Default: %(default)s",
)
#
parser_config.add_argument(
"--ppo-dataset",
default=None,
required=False,
help="Path to dataset for PPO training. Default: %(default)s",
)
parser_training.add_argument(
"--ppo-train",
action="store_true",
required=False,
help="Train a PPO model after training the LoRA. Default: %(default)s",
)
parser_training.add_argument(
"--train",
default=True,
action="store_true",
required=True,
help="Train the LoRA. Default: %(default)s",
)
# Data args
parser_training.add_argument(
"--txt_row_thd", default=-1, type=int, help="Custom thd for txt rows."
)
parser_training.add_argument(
"--use_eos_token",
default=1,
type=int,
help="Use eos token instead if padding with 0. enable with 1, disable with 0.",
)
# V2 model support
parser_training.add_argument(
"--groupsize", type=int, default=-1, help="Groupsize of v2 model"
)
parser_training.add_argument("--v1", action="store_true", help="Use V1 model")
# Multi GPU Support
parser_training.add_argument(
"--local_rank",
type=int,
default=0,
help="local rank if using torch.distributed.launch",
)
# Flash Attention
parser_training.add_argument(
"--flash_attention",
action="store_true",
help="enables flash attention, can improve performance and reduce VRAM use",
)
parser_training.add_argument(
"--xformers",
action="store_true",
help="enables xformers memory efficient attention, can improve performance and reduce VRAM use",
)
# Train Backend
parser_training.add_argument(
"--backend", type=str, default="cuda", help="Backend to use. Triton or Cuda."
)
# Positional embeddings
parser_training.add_argument(
"--xpos",
action="store_true",
help="Use xPos rotary embedding to extrapolate over longer seq len than the model is trained on",
)
parser_training.add_argument(
"--nope",
action="store_true",
help="Don't use any positional embeddings (https://arxiv.org/abs/2305.19466)",
)
return vars(parser.parse_args())
def get_config() -> Finetune4bConfig:
args = parse_commandline()
return Finetune4bConfig(
dataset=args["dataset"],
ds_type=args["ds_type"],
lora_out_dir=args["lora_out_dir"],
lora_apply_dir=args["lora_apply_dir"],
resume_checkpoint=args["resume_checkpoint"],
llama_q4_config_dir=args["llama_q4_config_dir"],
llama_q4_model=args["llama_q4_model"],
mbatch_size=args["mbatch_size"],
batch_size=args["batch_size"],
epochs=args["epochs"],
lr=args["lr"],
cutoff_len=args["cutoff_len"],
lora_r=args["lora_r"],
lora_alpha=args["lora_alpha"],
lora_dropout=args["lora_dropout"],
val_set_size=args["val_set_size"],
gradient_checkpointing=args["grad_chckpt"],
gradient_checkpointing_ratio=args["grad_chckpt_ratio"],
warmup_steps=args["warmup_steps"],
save_steps=args["save_steps"],
save_total_limit=args["save_total_limit"],
logging_steps=args["logging_steps"],
checkpoint=args["checkpoint"],
skip=args["skip"],
verbose=args["verbose"],
txt_row_thd=args["txt_row_thd"],
use_eos_token=args["use_eos_token"] != 0,
groupsize=args["groupsize"],
v1=args["v1"],
local_rank=args["local_rank"],
flash_attention=args["flash_attention"],
xformers=args["xformers"],
backend=args["backend"],
xpos=args["xpos"],
ppo_train=args["ppo_train"],
train=args["train"],
ppo_dataset=args["ppo_dataset"],
nope=args["nope"],
)