-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
79 lines (70 loc) · 4.49 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import numpy as np
import torch
import random
from learner import Learner
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='AAAI-2023-BiasEnsemble')
# training
parser.add_argument("--batch_size", help="batch_size", default=256, type=int)
parser.add_argument("--lr",help='learning rate',default=1e-3, type=float)
parser.add_argument("--weight_decay",help='weight_decay',default=0.0, type=float)
parser.add_argument("--momentum",help='momentum',default=0.9, type=float)
parser.add_argument("--num_workers", help="workers number", default=16, type=int)
parser.add_argument("--exp", help='experiment name', default='debugging', type=str)
parser.add_argument("--device", help="cuda or cpu", default='cuda', type=str)
parser.add_argument("--num_steps", help="# of iterations", default= 500 * 100, type=int)
parser.add_argument("--target_attr_idx", help="target_attr_idx", default= 0, type=int)
parser.add_argument("--bias_attr_idx", help="bias_attr_idx", default= 1, type=int)
parser.add_argument("--dataset", help="data to train", default= 'cmnist', type=str)
parser.add_argument("--percent", help="percentage of conflict", default= "1pct", type=str)
parser.add_argument("--use_lr_decay", action='store_true', help="whether to use learning rate decay")
parser.add_argument("--lr_decay_step", help="learning rate decay steps", type=int, default=10000)
parser.add_argument("--q", help="GCE parameter q", type=float, default=0.7)
parser.add_argument("--lr_gamma", help="lr gamma", type=float, default=0.1)
parser.add_argument("--lambda_dis_align", help="lambda_dis in Eq.2 of DisEnt", type=float, default=1.0)
parser.add_argument("--lambda_swap_align", help="lambda_swap_b in Eq.3 of DisEnt", type=float, default=1.0)
parser.add_argument("--lambda_swap", help="lambda swap (lambda_swap in Eq.4 of DisEnt)", type=float, default=1.0)
parser.add_argument("--ema_alpha", help="use weight mul", type=float, default=0.7)
parser.add_argument("--curr_step", help="curriculum steps", type=int, default= 0)
parser.add_argument("--model", help="which network, [MLP, ResNet18]", default= 'MLP', type=str)
parser.add_argument("--tensorboard_dir", help="tensorboard directory", default= 'summary', type=str)
parser.add_argument("--lr_decay", action="store_true")
# logging
parser.add_argument("--log_dir", help='path for saving model', default='./log', type=str)
parser.add_argument("--data_dir", help='path for loading data', default='./dataset', type=str)
parser.add_argument("--valid_freq", help='frequency to evaluate on valid/test set', default=500, type=int)
parser.add_argument("--log_freq", help='frequency to log on tensorboard', default=500, type=int)
parser.add_argument("--tensorboard", action="store_true", help="whether to use tensorboard")
# experiment
parser.add_argument("--train_lff_be", action="store_true", help="whether to train lff with our selection method")
parser.add_argument("--train_disent_be", action="store_true", help="whether to train disent with our selection method")
parser.add_argument("--fix_randomseed", action="store_true", help="fix randomseed")
parser.add_argument("--seed", help="seed", type=int, default=42)
parser.add_argument("--biased_model_train_iter", type=int, default=1000, help="biased_model_stop iteration")
parser.add_argument("--biased_model_softmax_threshold", type=float, default=0.99, help="biased_model_softmax_threshold")
parser.add_argument("--num_bias_models", type=int, default=5, help="number of bias models")
parser.add_argument("--resnet_pretrained", action="store_true", help="use pretrained ResNet")
parser.add_argument("--agreement", type=int, default=3, help="number of agreement")
args = parser.parse_args()
if args.fix_randomseed:
random_seed = args.seed
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed) # if use multi-GPU
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(random_seed)
random.seed(random_seed)
# init learner
learner = Learner(args)
# actual training
print('Training starts ...')
if args.train_lff_be:
learner.train_lff_be(args)
elif args.train_disent_be:
learner.train_disent_be(args)
else:
print('choose one of the two options ...')
import sys
sys.exit(0)