-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
192 lines (168 loc) · 6.65 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os
import pystan
import pickle
import csv
import matplotlib.pyplot as plot
MODEL_PATH = os.getcwd()
MODEL_SRCNAME = 'model.stan'
MODEL_FILENAME = 'model.pkl'
INFERENCE_SRCNAME = 'vectorized_inference_guessprob.stan'
INFERENCE_FILENAME = 'vectorized_inference_guessprob.pkl'
DATA_PATH = os.path.join(os.path.dirname(os.getcwd()), 'Data') # Parent directory
RESPONSE_NAME = 'responses.csv'
SKILLS_NEEDED_NAME = 'skills_needed.csv'
GUESS_PROB_NAME = 'guess_probs.csv'
def plotColorMap(data):
rows = len(data)
cols = len(data[0])
fig, ax = plot.subplots(1, 1, tight_layout=True)
for x in range(rows + 1):
ax.axhline(x, lw=1, color='black', zorder=5)
for x in range(cols+1):
ax.axvline(x, lw=1, color='black', zorder=5)
ax.imshow(data, interpolation='none', cmap=plot.get_cmap('gray'), extent=[0, cols, 0, rows], zorder=0)
ax.axis('off')
plot.show()
def divideByScale(guess_probs):
data_comp = list()
with open(os.path.join(DATA_PATH, GUESS_PROB_NAME)) as f:
reader = csv.reader(f)
ctr = 0
for row in reader:
if(ctr==0):
ctr += 1
continue
data_comp.append(row[3])
div = list()
for i in range(len(guess_probs)):
div.append(guess_probs[i]/float(data_comp[i]))
mean = (sum(div)/len(div))
return list(map(lambda x:x/mean, guess_probs))
def readSkillsNeeded():
convert = {'True':1, 'False':0}
skills_needed= list()
with open(os.path.join(DATA_PATH, SKILLS_NEEDED_NAME)) as f:
f_reader = csv.reader(f)
for data_row in f_reader:
curr = list()
for value in data_row:
curr.append(convert[value])
skills_needed.append(curr)
return skills_needed
def evaluateResponse(legend, response):
return list(map(lambda x,y:int(x==y), legend, response))
def readResponses():
convert = {'True':1, 'False':0}
line_ctr = 0
is_correct = list()
ground_truth = list()
with open(os.path.join(DATA_PATH, RESPONSE_NAME)) as f:
f_reader = csv.reader(f)
num_skills = 0
for data_row in f_reader:
if(line_ctr==1):
for value in data_row:
if(value==''):
num_skills += 1
legend = data_row[num_skills+1:]
elif(line_ctr==0):
line_ctr += 1
continue
else:
is_correct.append(evaluateResponse(legend, data_row[num_skills+1:]))
temp = list()
line_ctr += 1
return is_correct # 1,0 to indicate correct,wrong for each person
skills_needed = readSkillsNeeded()
is_correct = readResponses()
'''
data_dict = ('isCorrect1', 'isCorrect2', 'isCorrect3')
allowed_values = (0, 1)
observed_data = [dict(zip(data_dict,
[(a,b,c) for a in allowed_values for b in allowed_values for c in allowed_values][x])) for x in range(len(allowed_values)**len(data_dict))]
'''
''' ______________________ INFERRING GUESS PROBABILITY FOR EACH QUESTION FROM ALL CANDIDATES ___________________ '''
observed_data = list()
num_questions = len(skills_needed)
num_skills = len(skills_needed[0])
num_candidates = len(is_correct)
#observed_data.append({'num_questions':num_questions, 'num_skills':num_skills, 'num_candidates':num_candidates, 'is_correct':is_correct, 'skillsNeeded':skills_needed})
for qno in range(48):
spc_correct = list()
for cand in is_correct:
spc_correct.append(cand[qno])
spc_skill = skills_needed[qno]
observed_data.append({'num_skills':num_skills, 'num_candidates':num_candidates, 'is_correct':spc_correct, 'skillsNeeded':spc_skill})
#Compilation of model
try:
model_file_path = os.path.join(MODEL_PATH, MODEL_FILENAME)
model_file = open(model_file_path, 'rb')
except FileNotFoundError:
model_source_path = os.path.join(MODEL_PATH, MODEL_SRCNAME)
with open(model_source_path) as model_source:
model_code = model_source.read()
model = pystan.StanModel(model_code=model_code, verbose=False)
# Save the compiled model to avoid recompilation
# Explicitly delete the *.pkl file if model has been modified
with open(model_file_path, 'wb') as model_file:
pickle.dump(model, model_file)
else:
model = pickle.load(model_file)
model_file.close()
guess_inference = list()
for data in observed_data:
pass
result = model.sampling(data=data, pars=('p_guesses'))
#, pars=('P_skills', 'p_guesses')
#print(result)
guess_inference.append(result.summary(pars=('p_guesses'))['summary'][0][0])
print(guess_inference)
guess_inference = divideByScale(guess_inference)
print(guess_inference)
plot.bar([(i+1) for i in range(48)], guess_inference, width = 0.8)
plot.show()
# RESULTS TO BE PLOTTED
''' ______________________________________ INFERENCE USING LEARNED GUESS PROBABILTIES _______________________________ '''
#ground_truth = samples['skills']
is_correct_int = list()
for case in is_correct:
is_correct_int.append(list(map(lambda x:int(x), case)))
'''
data_dict = ('isCorrect1', 'isCorrect2', 'isCorrect3')
allowed_values = (0, 1)
observed_data = [dict(zip(data_dict,
[(a,b,c) for a in allowed_values for b in allowed_values for c in allowed_values][x])) for x in range(len(allowed_values)**len(data_dict))]
'''
observed_data = list()
num_questions = len(skills_needed)
num_skills = len(skills_needed[0])
for case in is_correct_int:
observed_data.append({'num_questions':num_questions, 'num_skills':num_skills, 'isCorrect':case, 'skillsNeededArr':skills_needed, 'p_guesses':guess_inference})
#Compilation of model
try:
model_file_path = os.path.join(MODEL_PATH, INFERENCE_FILENAME)
model_file = open(model_file_path, 'rb')
except FileNotFoundError:
model_source_path = os.path.join(MODEL_PATH, INFERENCE_SRCNAME)
with open(model_source_path) as model_source:
model_code = model_source.read()
model = pystan.StanModel(model_code=model_code, verbose=False)
# Save the compiled model to avoid recompilation
# Explicitly delete the *.pkl file if model has been modified
with open(model_file_path, 'wb') as model_file:
pickle.dump(model, model_file)
else:
model = pickle.load(model_file)
model_file.close()
inference = list() # Matrix of skill_probabilities for each observed_data
for data in observed_data:
result = model.sampling(data=data, pars=('P_skills'))
curr = list()
for k in range(num_skills):
curr.append(result.summary(pars=('P_skills'))['summary'][k][0])
inference.append(curr) # Mean Probabilties of All Skills
print(inference)
for k in inference:
print(k)
plotColorMap(inference)
#plotColorMap(ground_truth)