-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcnn_1.py
50 lines (42 loc) · 1.68 KB
/
cnn_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# 导入库及下载数据
import torch
import torchvision
import torchvision.transforms as transforms
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
)
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=False, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# print('loader work done!')
# 随机查看部分数据
from matplotlib import pyplot as plt
import numpy as np
import torchvision
# %matplotlib inline
def imshow(img):
img = img / 2 + 0.5
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
# print('showing img')
if __name__ == '__main__':
# 这是在 Windows 和 macOS 上使用 spawn 或 forkserver 时激活多进程支持的标准方式。
# 在 Unix 上,它有助于防止在产生新进程时运行代码
# 显示图像
# 随机获取部分训练数据
dataiter = iter(trainloader)
# print(dataiter.__sizeof__())
images, labels = next(dataiter)
# 显示图像
imshow(torchvision.utils.make_grid(images))
# 打印标签
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))