forked from kijai/ComfyUI-WanVideoWrapper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlatent_preview.py
202 lines (175 loc) · 8.71 KB
/
latent_preview.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import torch
from PIL import Image
from comfy.cli_args import args, LatentPreviewMethod
from comfy.taesd.taesd import TAESD
import comfy.model_management
import folder_paths
import comfy.utils
import logging
import os
from .taehv import TAEHV
MAX_PREVIEW_RESOLUTION = args.preview_size
def preview_to_image(latent_image):
print("latent_image shape: ", latent_image.shape)#torch.Size([60, 104, 3])
latents_ubyte = (((latent_image + 1.0) / 2.0).clamp(0, 1) # change scale from -1..1 to 0..1
.mul(0xFF) # to 0..255
)
if comfy.model_management.directml_enabled:
latents_ubyte = latents_ubyte.to(dtype=torch.uint8)
latents_ubyte = latents_ubyte.to(device="cpu", dtype=torch.uint8, non_blocking=comfy.model_management.device_supports_non_blocking(latent_image.device))
return Image.fromarray(latents_ubyte.numpy())
class LatentPreviewer:
def decode_latent_to_preview(self, x0):
pass
def decode_latent_to_preview_image(self, preview_format, x0):
preview_image = self.decode_latent_to_preview(x0)
return ("JPEG", preview_image, MAX_PREVIEW_RESOLUTION)
class TAESDPreviewerImpl(LatentPreviewer):
def __init__(self, taesd):
self.taesd = taesd
# def decode_latent_to_preview(self, x0):
# #x_sample = self.taesd.decode(x0[:1])[0].movedim(0, 2)
# print("x0 shape: ", x0.shape) #torch.Size([5, 16, 60, 104])
# x0 = x0.unsqueeze(0)
# print("x0 shape: ", x0.shape) #torch.Size([5, 16, 60, 104])
# x_sample = self.taesd.decode_video(x0, parallel=False)[0].permute(0, 2, 3, 1)[0]
# print("x_sample shape: ", x_sample.shape)
# return preview_to_image(x_sample)
class Latent2RGBPreviewer(LatentPreviewer):
def __init__(self, latent_rgb_factors, latent_rgb_factors_bias=None):
self.latent_rgb_factors = torch.tensor(latent_rgb_factors, device="cpu").transpose(0, 1)
self.latent_rgb_factors_bias = None
if latent_rgb_factors_bias is not None:
self.latent_rgb_factors_bias = torch.tensor(latent_rgb_factors_bias, device="cpu")
def decode_latent_to_preview(self, x0):
self.latent_rgb_factors = self.latent_rgb_factors.to(dtype=x0.dtype, device=x0.device)
if self.latent_rgb_factors_bias is not None:
self.latent_rgb_factors_bias = self.latent_rgb_factors_bias.to(dtype=x0.dtype, device=x0.device)
if x0.ndim == 5:
x0 = x0[0, :, 0]
else:
x0 = x0[0]
latent_image = torch.nn.functional.linear(x0.movedim(0, -1), self.latent_rgb_factors, bias=self.latent_rgb_factors_bias)
# latent_image = x0[0].permute(1, 2, 0) @ self.latent_rgb_factors
return preview_to_image(latent_image)
def get_previewer(device, latent_format):
previewer = None
method = args.preview_method
if method != LatentPreviewMethod.NoPreviews:
# TODO previewer methods
if method == LatentPreviewMethod.Auto:
method = LatentPreviewMethod.Latent2RGB
if method == LatentPreviewMethod.TAESD:
taehv_path = os.path.join(folder_paths.models_dir, "vae_approx", "taew2_1.safetensors")
if not os.path.exists(taehv_path):
raise RuntimeError(f"Could not find {taehv_path}")
taew_sd = comfy.utils.load_torch_file(taehv_path)
taesd = TAEHV(taew_sd).to(device)
previewer = TAESDPreviewerImpl(taesd)
previewer = WrappedPreviewer(previewer, rate=16)
if previewer is None:
if latent_format.latent_rgb_factors is not None:
previewer = Latent2RGBPreviewer(latent_format.latent_rgb_factors, latent_format.latent_rgb_factors_bias)
previewer = WrappedPreviewer(previewer, rate=4)
return previewer
def prepare_callback(model, steps, x0_output_dict=None):
preview_format = "JPEG"
if preview_format not in ["JPEG", "PNG"]:
preview_format = "JPEG"
previewer = get_previewer(model.load_device, model.model.latent_format)
print("previewer: ", previewer)
pbar = comfy.utils.ProgressBar(steps)
def callback(step, x0, x, total_steps):
if x0_output_dict is not None:
x0_output_dict["x0"] = x0
preview_bytes = None
if previewer:
preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
pbar.update_absolute(step + 1, total_steps, preview_bytes)
return callback
#borrowed VideoHelperSuite https://github.com/Kosinkadink/ComfyUI-VideoHelperSuite/blob/main/videohelpersuite/latent_preview.py
import server
from threading import Thread
import torch.nn.functional as F
import io
import time
serv = server.PromptServer.instance
class WrappedPreviewer(LatentPreviewer):
def __init__(self, previewer, rate=16):
self.first_preview = True
self.last_time = 0
self.c_index = 0
self.rate = rate
if hasattr(previewer, 'taesd'):
self.taesd = previewer.taesd
elif hasattr(previewer, 'latent_rgb_factors'):
self.latent_rgb_factors = previewer.latent_rgb_factors
self.latent_rgb_factors_bias = previewer.latent_rgb_factors_bias
else:
raise Exception('Unsupported preview type for VHS animated previews')
def decode_latent_to_preview_image(self, preview_format, x0):
if x0.ndim == 5:
#Keep batch major
x0 = x0.movedim(2,1)
x0 = x0.reshape((-1,)+x0.shape[-3:])
num_images = x0.size(0)
new_time = time.time()
num_previews = int((new_time - self.last_time) * self.rate)
self.last_time = self.last_time + num_previews/self.rate
if num_previews > num_images:
num_previews = num_images
elif num_previews <= 0:
return None
if self.first_preview:
self.first_preview = False
serv.send_sync('VHS_latentpreview', {'length':num_images, 'rate': self.rate})
self.last_time = new_time + 1/self.rate
if self.c_index + num_previews > num_images:
x0 = x0.roll(-self.c_index, 0)[:num_previews]
else:
x0 = x0[self.c_index:self.c_index + num_previews]
Thread(target=self.process_previews, args=(x0, self.c_index,
num_images)).run()
self.c_index = (self.c_index + num_previews) % num_images
return None
def process_previews(self, image_tensor, ind, leng):
max_size = 256
image_tensor = self.decode_latent_to_preview(image_tensor)
if image_tensor.size(1) > max_size or image_tensor.size(2) > max_size:
image_tensor = image_tensor.movedim(-1,0)
if image_tensor.size(2) < image_tensor.size(3):
height = (max_size * image_tensor.size(2)) // image_tensor.size(3)
image_tensor = F.interpolate(image_tensor, (height,max_size), mode='bilinear')
else:
width = (max_size * image_tensor.size(3)) // image_tensor.size(2)
image_tensor = F.interpolate(image_tensor, (max_size, width), mode='bilinear')
image_tensor = image_tensor.movedim(0,-1)
previews_ubyte = (image_tensor.clamp(0, 1)
.mul(0xFF) # to 0..255
).to(device="cpu", dtype=torch.uint8)
for preview in previews_ubyte:
i = Image.fromarray(preview.numpy())
message = io.BytesIO()
message.write((1).to_bytes(length=4, byteorder='big')*2)
message.write(ind.to_bytes(length=4, byteorder='big'))
i.save(message, format="JPEG", quality=95, compress_level=1)
#NOTE: send sync already uses call_soon_threadsafe
serv.send_sync(server.BinaryEventTypes.PREVIEW_IMAGE,
message.getvalue(), serv.client_id)
if self.rate == 16:
ind = (ind + 1) % ((leng-1) * 4 - 1)
else:
ind = (ind + 1) % leng
def decode_latent_to_preview(self, x0):
if hasattr(self, 'taesd'):
x0 = x0.unsqueeze(0)
x_sample = self.taesd.decode_video(x0, parallel=False, show_progress_bar=False)[0].permute(0, 2, 3, 1)
return x_sample
else:
self.latent_rgb_factors = self.latent_rgb_factors.to(dtype=x0.dtype, device=x0.device)
if self.latent_rgb_factors_bias is not None:
self.latent_rgb_factors_bias = self.latent_rgb_factors_bias.to(dtype=x0.dtype, device=x0.device)
latent_image = F.linear(x0.movedim(1, -1), self.latent_rgb_factors,
bias=self.latent_rgb_factors_bias)
latent_image = (latent_image + 1.0) / 2.0
return latent_image