You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardexpand all lines: docs/freqai-parameter-table.md
-1
Original file line number
Diff line number
Diff line change
@@ -15,7 +15,6 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
15
15
| `expiration_hours` | Avoid making predictions if a model is more than `expiration_hours` old. <br> **Datatype:** Positive integer. <br> Default: `0` (models never expire).
| `save_backtest_models` | Save models to disk when running backtesting. Backtesting operates most efficiently by saving the prediction data and reusing them directly for subsequent runs (when you wish to tune entry/exit parameters). Saving backtesting models to disk also allows to use the same model files for starting a dry/live instance with the same model `identifier`. <br> **Datatype:** Boolean. <br> Default: `False` (no models are saved).
18
-
| `backtest_using_historic_predictions` | Reuse `historic_predictions` in backtesting with [Backtest live models](freqai-running.md#backtest_live_models)) option. <br> Default: `True`
19
18
| `fit_live_predictions_candles` | Number of historical candles to use for computing target (label) statistics from prediction data, instead of from the training dataset (more information can be found [here](freqai-configuration.md#creating-a-dynamic-target-threshold)). <br> **Datatype:** Positive integer.
20
19
| `follow_mode` | Use a `follower` that will look for models associated with a specific `identifier` and load those for inferencing. A `follower` will **not** train new models. <br> **Datatype:** Boolean. <br> Default: `False`.
21
20
| `continual_learning` | Use the final state of the most recently trained model as starting point for the new model, allowing for incremental learning (more information can be found [here](freqai-running.md#continual-learning)). <br> **Datatype:** Boolean. <br> Default: `False`.
Copy file name to clipboardexpand all lines: docs/freqai-running.md
+2-10
Original file line number
Diff line number
Diff line change
@@ -81,17 +81,9 @@ To save the models generated during a particular backtest so that you can start
81
81
82
82
### Backtest live models
83
83
84
-
FreqAI allow you to reuse ready models through the backtest parameter `--freqai-backtest-live-models`. This can be useful when you want to reuse predictions generated in dry/run for comparison or other study. For that, you have 2 options:
84
+
FreqAI allow you to reuse live historic predictions through the backtest parameter `--freqai-backtest-live-models`. This can be useful when you want to reuse predictions generated in dry/run for comparison or other study.
85
85
86
-
1. Set `"backtest_using_historic_predictions"` to `True` in the config. With this option, FreqAI will reuse `historic_predictions` in backtesting. This option requires less disk space and backtesting will run faster.
87
-
2. Set `"purge_old_models"` to `False` and `"backtest_using_historic_predictions"` to `False` in the config. In this case, FreqAI will use the saved models to make the predictions in backtesting. This option requires more disk space and the backtest will have a longer execution time.
88
-
89
-
The `--timerange` parameter must not be informed, as it will be automatically calculated through the training end dates of the models.
90
-
91
-
Each model has an identifier derived from the training end date. If you have only 1 model trained, FreqAI will backtest from the training end date until the current date. If you have more than 1 model, each model will perform the backtesting according to the training end date until the training end date of the next model and so on. For the last model, the period of the previous model will be used for the execution.
92
-
93
-
!!! Note
94
-
Currently, there is no checking for expired models, even if the `expired_hours` parameter is set.
86
+
The `--timerange` parameter must not be informed, as it will be automatically calculated through the data in historic predictions file.
95
87
96
88
97
89
### Downloading data to cover the full backtest period
0 commit comments