@@ -59,7 +59,7 @@ class FreqaiDataDrawer:
59
59
Juha Nykänen @suikula, Wagner Costa @wagnercosta, Johan Vlugt @Jooopieeert
60
60
"""
61
61
62
- def __init__ (self , full_path : Path , config : Config , follow_mode : bool = False ):
62
+ def __init__ (self , full_path : Path , config : Config ):
63
63
64
64
self .config = config
65
65
self .freqai_info = config .get ("freqai" , {})
@@ -84,9 +84,6 @@ def __init__(self, full_path: Path, config: Config, follow_mode: bool = False):
84
84
self .pair_dictionary_path = Path (self .full_path / "pair_dictionary.json" )
85
85
self .global_metadata_path = Path (self .full_path / "global_metadata.json" )
86
86
self .metric_tracker_path = Path (self .full_path / "metric_tracker.json" )
87
- self .follow_mode = follow_mode
88
- if follow_mode :
89
- self .create_follower_dict ()
90
87
self .load_drawer_from_disk ()
91
88
self .load_historic_predictions_from_disk ()
92
89
self .metric_tracker : Dict [str , Dict [str , Dict [str , list ]]] = {}
@@ -149,13 +146,8 @@ def load_drawer_from_disk(self):
149
146
if exists :
150
147
with open (self .pair_dictionary_path , "r" ) as fp :
151
148
self .pair_dict = rapidjson .load (fp , number_mode = rapidjson .NM_NATIVE )
152
- elif not self .follow_mode :
153
- logger .info ("Could not find existing datadrawer, starting from scratch" )
154
149
else :
155
- logger .warning (
156
- f"Follower could not find pair_dictionary at { self .full_path } "
157
- "sending null values back to strategy"
158
- )
150
+ logger .info ("Could not find existing datadrawer, starting from scratch" )
159
151
160
152
def load_metric_tracker_from_disk (self ):
161
153
"""
@@ -193,13 +185,8 @@ def load_historic_predictions_from_disk(self):
193
185
self .historic_predictions = cloudpickle .load (fp )
194
186
logger .warning ('FreqAI successfully loaded the backup historical predictions file.' )
195
187
196
- elif not self .follow_mode :
197
- logger .info ("Could not find existing historic_predictions, starting from scratch" )
198
188
else :
199
- logger .warning (
200
- f"Follower could not find historic predictions at { self .full_path } "
201
- "sending null values back to strategy"
202
- )
189
+ logger .info ("Could not find existing historic_predictions, starting from scratch" )
203
190
204
191
return exists
205
192
@@ -248,23 +235,6 @@ def save_global_metadata_to_disk(self, metadata: Dict[str, Any]):
248
235
rapidjson .dump (metadata , fp , default = self .np_encoder ,
249
236
number_mode = rapidjson .NM_NATIVE )
250
237
251
- def create_follower_dict (self ):
252
- """
253
- Create or dictionary for each follower to maintain unique persistent prediction targets
254
- """
255
-
256
- whitelist_pairs = self .config .get ("exchange" , {}).get ("pair_whitelist" )
257
-
258
- exists = self .follower_dict_path .is_file ()
259
-
260
- if exists :
261
- logger .info ("Found an existing follower dictionary" )
262
-
263
- for pair in whitelist_pairs :
264
- self .follower_dict [pair ] = {}
265
-
266
- self .save_follower_dict_to_disk ()
267
-
268
238
def np_encoder (self , object ):
269
239
if isinstance (object , np .generic ):
270
240
return object .item ()
@@ -282,27 +252,17 @@ def get_pair_dict_info(self, pair: str) -> Tuple[str, int, bool]:
282
252
"""
283
253
284
254
pair_dict = self .pair_dict .get (pair )
285
- data_path_set = self .pair_dict .get (pair , self .empty_pair_dict ).get ("data_path" , "" )
255
+ # data_path_set = self.pair_dict.get(pair, self.empty_pair_dict).get("data_path", "")
286
256
return_null_array = False
287
257
288
258
if pair_dict :
289
259
model_filename = pair_dict ["model_filename" ]
290
260
trained_timestamp = pair_dict ["trained_timestamp" ]
291
- elif not self . follow_mode :
261
+ else :
292
262
self .pair_dict [pair ] = self .empty_pair_dict .copy ()
293
263
model_filename = ""
294
264
trained_timestamp = 0
295
265
296
- if not data_path_set and self .follow_mode :
297
- logger .warning (
298
- f"Follower could not find current pair { pair } in "
299
- f"pair_dictionary at path { self .full_path } , sending null values "
300
- "back to strategy."
301
- )
302
- trained_timestamp = 0
303
- model_filename = ''
304
- return_null_array = True
305
-
306
266
return model_filename , trained_timestamp , return_null_array
307
267
308
268
def set_pair_dict_info (self , metadata : dict ) -> None :
@@ -311,7 +271,6 @@ def set_pair_dict_info(self, metadata: dict) -> None:
311
271
return
312
272
else :
313
273
self .pair_dict [metadata ["pair" ]] = self .empty_pair_dict .copy ()
314
-
315
274
return
316
275
317
276
def set_initial_return_values (self , pair : str , pred_df : DataFrame ) -> None :
0 commit comments