Skip to content

Commit ccb4efb

Browse files
committed
remove follow mode in favor of producer consumer
1 parent 1d67387 commit ccb4efb

File tree

3 files changed

+17
-128
lines changed

3 files changed

+17
-128
lines changed

freqtrade/freqai/data_drawer.py

+5-46
Original file line numberDiff line numberDiff line change
@@ -59,7 +59,7 @@ class FreqaiDataDrawer:
5959
Juha Nykänen @suikula, Wagner Costa @wagnercosta, Johan Vlugt @Jooopieeert
6060
"""
6161

62-
def __init__(self, full_path: Path, config: Config, follow_mode: bool = False):
62+
def __init__(self, full_path: Path, config: Config):
6363

6464
self.config = config
6565
self.freqai_info = config.get("freqai", {})
@@ -84,9 +84,6 @@ def __init__(self, full_path: Path, config: Config, follow_mode: bool = False):
8484
self.pair_dictionary_path = Path(self.full_path / "pair_dictionary.json")
8585
self.global_metadata_path = Path(self.full_path / "global_metadata.json")
8686
self.metric_tracker_path = Path(self.full_path / "metric_tracker.json")
87-
self.follow_mode = follow_mode
88-
if follow_mode:
89-
self.create_follower_dict()
9087
self.load_drawer_from_disk()
9188
self.load_historic_predictions_from_disk()
9289
self.metric_tracker: Dict[str, Dict[str, Dict[str, list]]] = {}
@@ -149,13 +146,8 @@ def load_drawer_from_disk(self):
149146
if exists:
150147
with open(self.pair_dictionary_path, "r") as fp:
151148
self.pair_dict = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
152-
elif not self.follow_mode:
153-
logger.info("Could not find existing datadrawer, starting from scratch")
154149
else:
155-
logger.warning(
156-
f"Follower could not find pair_dictionary at {self.full_path} "
157-
"sending null values back to strategy"
158-
)
150+
logger.info("Could not find existing datadrawer, starting from scratch")
159151

160152
def load_metric_tracker_from_disk(self):
161153
"""
@@ -193,13 +185,8 @@ def load_historic_predictions_from_disk(self):
193185
self.historic_predictions = cloudpickle.load(fp)
194186
logger.warning('FreqAI successfully loaded the backup historical predictions file.')
195187

196-
elif not self.follow_mode:
197-
logger.info("Could not find existing historic_predictions, starting from scratch")
198188
else:
199-
logger.warning(
200-
f"Follower could not find historic predictions at {self.full_path} "
201-
"sending null values back to strategy"
202-
)
189+
logger.info("Could not find existing historic_predictions, starting from scratch")
203190

204191
return exists
205192

@@ -248,23 +235,6 @@ def save_global_metadata_to_disk(self, metadata: Dict[str, Any]):
248235
rapidjson.dump(metadata, fp, default=self.np_encoder,
249236
number_mode=rapidjson.NM_NATIVE)
250237

251-
def create_follower_dict(self):
252-
"""
253-
Create or dictionary for each follower to maintain unique persistent prediction targets
254-
"""
255-
256-
whitelist_pairs = self.config.get("exchange", {}).get("pair_whitelist")
257-
258-
exists = self.follower_dict_path.is_file()
259-
260-
if exists:
261-
logger.info("Found an existing follower dictionary")
262-
263-
for pair in whitelist_pairs:
264-
self.follower_dict[pair] = {}
265-
266-
self.save_follower_dict_to_disk()
267-
268238
def np_encoder(self, object):
269239
if isinstance(object, np.generic):
270240
return object.item()
@@ -282,27 +252,17 @@ def get_pair_dict_info(self, pair: str) -> Tuple[str, int, bool]:
282252
"""
283253

284254
pair_dict = self.pair_dict.get(pair)
285-
data_path_set = self.pair_dict.get(pair, self.empty_pair_dict).get("data_path", "")
255+
# data_path_set = self.pair_dict.get(pair, self.empty_pair_dict).get("data_path", "")
286256
return_null_array = False
287257

288258
if pair_dict:
289259
model_filename = pair_dict["model_filename"]
290260
trained_timestamp = pair_dict["trained_timestamp"]
291-
elif not self.follow_mode:
261+
else:
292262
self.pair_dict[pair] = self.empty_pair_dict.copy()
293263
model_filename = ""
294264
trained_timestamp = 0
295265

296-
if not data_path_set and self.follow_mode:
297-
logger.warning(
298-
f"Follower could not find current pair {pair} in "
299-
f"pair_dictionary at path {self.full_path}, sending null values "
300-
"back to strategy."
301-
)
302-
trained_timestamp = 0
303-
model_filename = ''
304-
return_null_array = True
305-
306266
return model_filename, trained_timestamp, return_null_array
307267

308268
def set_pair_dict_info(self, metadata: dict) -> None:
@@ -311,7 +271,6 @@ def set_pair_dict_info(self, metadata: dict) -> None:
311271
return
312272
else:
313273
self.pair_dict[metadata["pair"]] = self.empty_pair_dict.copy()
314-
315274
return
316275

317276
def set_initial_return_values(self, pair: str, pred_df: DataFrame) -> None:

freqtrade/freqai/freqai_interface.py

+12-31
Original file line numberDiff line numberDiff line change
@@ -66,12 +66,11 @@ def __init__(self, config: Config) -> None:
6666
self.retrain = False
6767
self.first = True
6868
self.set_full_path()
69-
self.follow_mode: bool = self.freqai_info.get("follow_mode", False)
7069
self.save_backtest_models: bool = self.freqai_info.get("save_backtest_models", True)
7170
if self.save_backtest_models:
7271
logger.info('Backtesting module configured to save all models.')
7372

74-
self.dd = FreqaiDataDrawer(Path(self.full_path), self.config, self.follow_mode)
73+
self.dd = FreqaiDataDrawer(Path(self.full_path), self.config)
7574
# set current candle to arbitrary historical date
7675
self.current_candle: datetime = datetime.fromtimestamp(637887600, tz=timezone.utc)
7776
self.dd.current_candle = self.current_candle
@@ -153,7 +152,7 @@ def start(self, dataframe: DataFrame, metadata: dict, strategy: IStrategy) -> Da
153152
# (backtest window, i.e. window immediately following the training window).
154153
# FreqAI slides the window and sequentially builds the backtesting results before returning
155154
# the concatenated results for the full backtesting period back to the strategy.
156-
elif not self.follow_mode:
155+
else:
157156
self.dk = FreqaiDataKitchen(self.config, self.live, metadata["pair"])
158157
if not self.config.get("freqai_backtest_live_models", False):
159158
logger.info(f"Training {len(self.dk.training_timeranges)} timeranges")
@@ -379,46 +378,28 @@ def start_live(
379378
:returns:
380379
dk: FreqaiDataKitchen = Data management/analysis tool associated to present pair only
381380
"""
382-
# update follower
383-
if self.follow_mode:
384-
self.dd.update_follower_metadata()
385381

386382
# get the model metadata associated with the current pair
387383
(_, trained_timestamp, return_null_array) = self.dd.get_pair_dict_info(metadata["pair"])
388384

389-
# if the metadata doesn't exist, the follower returns null arrays to strategy
390-
if self.follow_mode and return_null_array:
391-
logger.info("Returning null array from follower to strategy")
392-
self.dd.return_null_values_to_strategy(dataframe, dk)
393-
return dk
394-
395385
# append the historic data once per round
396386
if self.dd.historic_data:
397387
self.dd.update_historic_data(strategy, dk)
398388
logger.debug(f'Updating historic data on pair {metadata["pair"]}')
399389
self.track_current_candle()
400390

401-
if not self.follow_mode:
402-
403-
(_, new_trained_timerange, data_load_timerange) = dk.check_if_new_training_required(
404-
trained_timestamp
405-
)
406-
dk.set_paths(metadata["pair"], new_trained_timerange.stopts)
407-
408-
# load candle history into memory if it is not yet.
409-
if not self.dd.historic_data:
410-
self.dd.load_all_pair_histories(data_load_timerange, dk)
391+
(_, new_trained_timerange, data_load_timerange) = dk.check_if_new_training_required(
392+
trained_timestamp
393+
)
394+
dk.set_paths(metadata["pair"], new_trained_timerange.stopts)
411395

412-
if not self.scanning:
413-
self.scanning = True
414-
self.start_scanning(strategy)
396+
# load candle history into memory if it is not yet.
397+
if not self.dd.historic_data:
398+
self.dd.load_all_pair_histories(data_load_timerange, dk)
415399

416-
elif self.follow_mode:
417-
dk.set_paths(metadata["pair"], trained_timestamp)
418-
logger.info(
419-
"FreqAI instance set to follow_mode, finding existing pair "
420-
f"using { self.identifier }"
421-
)
400+
if not self.scanning:
401+
self.scanning = True
402+
self.start_scanning(strategy)
422403

423404
# load the model and associated data into the data kitchen
424405
self.model = self.dd.load_data(metadata["pair"], dk)

tests/freqai/test_freqai_interface.py

-51
Original file line numberDiff line numberDiff line change
@@ -376,57 +376,6 @@ def test_backtesting_fit_live_predictions(mocker, freqai_conf, caplog):
376376
shutil.rmtree(Path(freqai.dk.full_path))
377377

378378

379-
def test_follow_mode(mocker, freqai_conf):
380-
freqai_conf.update({"timerange": "20180110-20180130"})
381-
382-
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
383-
exchange = get_patched_exchange(mocker, freqai_conf)
384-
strategy.dp = DataProvider(freqai_conf, exchange)
385-
strategy.freqai_info = freqai_conf.get("freqai", {})
386-
freqai = strategy.freqai
387-
freqai.live = True
388-
freqai.dk = FreqaiDataKitchen(freqai_conf)
389-
timerange = TimeRange.parse_timerange("20180110-20180130")
390-
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
391-
392-
metadata = {"pair": "ADA/BTC"}
393-
freqai.dd.set_pair_dict_info(metadata)
394-
395-
data_load_timerange = TimeRange.parse_timerange("20180110-20180130")
396-
new_timerange = TimeRange.parse_timerange("20180120-20180130")
397-
398-
freqai.extract_data_and_train_model(
399-
new_timerange, "ADA/BTC", strategy, freqai.dk, data_load_timerange)
400-
401-
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_model.joblib").is_file()
402-
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_metadata.json").is_file()
403-
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_trained_df.pkl").is_file()
404-
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_svm_model.joblib").is_file()
405-
406-
# start the follower and ask it to predict on existing files
407-
408-
freqai_conf.get("freqai", {}).update({"follow_mode": "true"})
409-
410-
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
411-
exchange = get_patched_exchange(mocker, freqai_conf)
412-
strategy.dp = DataProvider(freqai_conf, exchange)
413-
strategy.freqai_info = freqai_conf.get("freqai", {})
414-
freqai = strategy.freqai
415-
freqai.live = True
416-
freqai.dk = FreqaiDataKitchen(freqai_conf, freqai.live)
417-
timerange = TimeRange.parse_timerange("20180110-20180130")
418-
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
419-
420-
df = strategy.dp.get_pair_dataframe('ADA/BTC', '5m')
421-
422-
freqai.dk.pair = "ADA/BTC"
423-
freqai.start_live(df, metadata, strategy, freqai.dk)
424-
425-
assert len(freqai.dk.return_dataframe.index) == 5702
426-
427-
shutil.rmtree(Path(freqai.dk.full_path))
428-
429-
430379
def test_principal_component_analysis(mocker, freqai_conf):
431380
freqai_conf.update({"timerange": "20180110-20180130"})
432381
freqai_conf.get("freqai", {}).get("feature_parameters", {}).update(

0 commit comments

Comments
 (0)