-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtoy.py
302 lines (237 loc) · 12.5 KB
/
toy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# coding:utf-8
import os
import sys
import math
import time
import pickle
import logging
import tqdm_logging
from utils import SYM_PAD, SYM_GO, SYM_EOS
from data import batcher, build_vocab, load_vocab, padding_inputs, sentence2id, id2sentence
from discriminator import Discriminator
from generator import Generator
from encoder import EncoderRNN
import torch
import torch.nn as nn
from torch.autograd import Variable
import argparse
# user the root logger
logger = logging.getLogger("lan2720")
def format_arguments(args):
s = []
for k, v in sorted(vars(args).items(), key=lambda i: i[0]):
s.append(k + '=' + (str(v) if v != None else ''))
return '\n'.join(s)
def mask(x):
"""
返回x的mask矩阵,即x中为0的部分,全部为0,非0的部分,全部为1
"""
return torch.gt(x, 0).float()
def eval(valid_query_file, valid_response_file, batch_size,
word_embeddings, E, G,
loss_func, use_cuda,
vocab, response_max_len):
logger.info('---------------------validating--------------------------')
logger.info('Loading valid data from %s and %s' % (valid_query_file, valid_response_file))
valid_data_generator = batcher(batch_size, valid_query_file, valid_response_file)
sum_loss = 0.0
valid_char_num = 0
example_num = 0
while True:
try:
post_sentences, response_sentences = valid_data_generator.next()
except StopIteration:
# one epoch finish
break
post_ids = [sentence2id(sent, vocab) for sent in post_sentences]
response_ids = [sentence2id(sent, vocab) for sent in response_sentences]
posts_var, posts_length = padding_inputs(post_ids, None)
responses_var, responses_length = padding_inputs(response_ids, response_max_len)
# sort by post length
posts_length, perms_idx = posts_length.sort(0, descending=True)
posts_var = posts_var[perms_idx]
responses_var = responses_var[perms_idx]
responses_length = responses_length[perms_idx]
# 在sentence后面加eos
references_var = torch.cat([responses_var, Variable(torch.zeros(responses_var.size(0),1).long(), requires_grad=False)], dim=1)
for idx, length in enumerate(responses_length):
references_var[idx, length] = SYM_EOS
if use_cuda:
posts_var = posts_var.cuda()
responses_var = responses_var.cuda()
references_var = references_var.cuda()
embedded_post = word_embeddings(posts_var)
embedded_response = word_embeddings(responses_var)
_, dec_init_state = E(embedded_post, input_lengths=posts_length.numpy())
log_softmax_outputs = G.supervise(embedded_response, dec_init_state, word_embeddings) # [B, T, vocab_size]
outputs = log_softmax_outputs.view(-1, len(vocab))
mask_pos = mask(references_var).view(-1).unsqueeze(-1)
masked_output = outputs*(mask_pos.expand_as(outputs))
loss = loss_func(masked_output, references_var.view(-1))
sum_loss += loss.cpu().data.numpy()[0]
example_num += posts_var.size(0)
valid_char_num += torch.sum(mask_pos).cpu().data.numpy()[0]
logger.info('Valid Loss (per case): %.2f Valid Perplexity (per word): %.2f' % (sum_loss/example_num, math.exp(sum_loss/valid_char_num)))
logger.info('---------------------finish-------------------------')
def save_model(save_dir, epoch,
word_embeddings, encoder, generator, discriminator=None):
torch.save(word_embeddings.state_dict(), os.path.join(save_dir, 'epoch%d.word_embeddings.params.pkl' % epoch))
torch.save(encoder.state_dict(), os.path.join(save_dir, 'epoch%d.encoder.params.pkl' % epoch))
torch.save(generator.state_dict(), os.path.join(save_dir, 'epoch%d.generator.params.pkl' % epoch))
if discriminator:
torch.save(discriminator.state_dict(), os.path.join(save_dir, 'epoch%d.discriminator.params.pkl' % epoch))
logger.info('Save model (epoch = %d) in %s' % (epoch, save_dir))
def reload_model(reload_dir, epoch,
word_embeddings, encoder, generator, discriminator=None):
if os.path.exists(reload_dir):
word_embeddings.load_state_dict(torch.load(
os.path.join(reload_dir, 'epoch%d.word_embeddings.params.pkl' % epoch)))
encoder.load_state_dict(torch.load(
os.path.join(reload_dir, 'epoch%d.encoder.params.pkl' % epoch)))
generator.load_state_dict(torch.load(
os.path.join(reload_dir, 'epoch%d.generator.params.pkl' % epoch)))
if discriminator:
discriminator.load_state_dict(torch.load(
os.path.join(reload_dir, 'epoch%d.discriminator.params.pkl' % epoch)))
logger.info("Loading parameters from %s in epoch %d" % (reload_dir, epoch))
else:
raise RuntimeError("No stored model to load from %s" % reload_dir)
def pretrain():
# Parse command line arguments
argparser = argparse.ArgumentParser()
# train
argparser.add_argument('--mode', '-m', choices=('pretrain', 'adversarial', 'inference'),
type=str, required=True)
argparser.add_argument('--batch_size', '-b', type=int, default=168)
argparser.add_argument('--num_epoch', '-e', type=int, default=10)
argparser.add_argument('--print_every', type=int, default=100)
argparser.add_argument('--use_cuda', default=True)
argparser.add_argument('--g_learning_rate', '-glr', type=float, default=0.001)
argparser.add_argument('--d_learning_rate', '-dlr', type=float, default=0.001)
# resume
argparser.add_argument('--resume', action='store_true', dest='resume')
argparser.add_argument('--resume_dir', type=str)
argparser.add_argument('--resume_epoch', type=int)
# save
argparser.add_argument('--exp_dir', type=str, required=True)
# model
argparser.add_argument('--emb_dim', type=int, default=128)
argparser.add_argument('--hidden_dim', type=int, default=256)
argparser.add_argument('--dropout_rate', '-drop', type=float, default=0.5)
argparser.add_argument('--n_layers', type=int, default=1)
argparser.add_argument('--response_max_len', type=int, default=15)
# data
argparser.add_argument('--train_query_file', '-tqf', type=str, required=True)
argparser.add_argument('--train_response_file', '-trf', type=str, required=True)
argparser.add_argument('--valid_query_file', '-vqf', type=str, required=True)
argparser.add_argument('--valid_response_file', '-vrf', type=str, required=True)
argparser.add_argument('--vocab_file', '-vf', type=str, default='')
argparser.add_argument('--max_vocab_size', '-mv', type=int, default=100000)
args = argparser.parse_args()
# set up the output directory
exp_dirname = os.path.join(args.exp_dir, args.mode, time.strftime("%Y-%m-%d-%H-%M-%S"))
os.makedirs(exp_dirname)
# set up the logger
tqdm_logging.config(logger, os.path.join(exp_dirname, 'train.log'),
mode='w', silent=False, debug=True)
if not args.vocab_file:
logger.info("no vocabulary file")
build_vocab(args.train_query_file, args.train_response_file, seperated=True)
sys.exit()
else:
vocab, rev_vocab = load_vocab(args.vocab_file, max_vocab=args.max_vocab_size)
vocab_size = len(vocab)
word_embeddings = nn.Embedding(vocab_size, args.emb_dim, padding_idx=SYM_PAD)
E = EncoderRNN(vocab_size, args.emb_dim, args.hidden_dim, args.n_layers, args.dropout_rate, bidirectional=True, variable_lengths=True)
G = Generator(vocab_size, args.response_max_len, args.emb_dim, 2*args.hidden_dim, args.n_layers, dropout_p=args.dropout_rate)
if args.use_cuda:
word_embeddings.cuda()
E.cuda()
G.cuda()
loss_func = nn.NLLLoss(size_average=False)
params = list(word_embeddings.parameters()) + list(E.parameters()) + list(G.parameters())
opt = torch.optim.Adam(params, lr=args.g_learning_rate)
logger.info('----------------------------------')
logger.info('Pre-train a neural conversation model')
logger.info('----------------------------------')
logger.info('Args:')
logger.info(str(args))
logger.info('Vocabulary from ' + args.vocab_file)
logger.info('vocabulary size: %d' % vocab_size)
logger.info('Loading text data from ' + args.train_query_file + ' and ' + args.train_response_file)
# resume training from other experiment
if args.resume:
assert args.resume_epoch >= 0, 'If resume training, please assign resume_epoch'
reload_model(args.resume_dir, args.resume_epoch,
word_embeddings, E, G)
start_epoch = args.resume_epoch + 1
else:
start_epoch = 0
# dump args
with open(os.path.join(exp_dirname, 'args.pkl'), 'wb') as f:
pickle.dump(args, f)
for e in range(start_epoch, args.num_epoch):
logger.info('---------------------training--------------------------')
train_data_generator = batcher(args.batch_size, args.train_query_file, args.train_response_file)
logger.info("Epoch: %d/%d" % (e, args.num_epoch))
step = 0
total_loss = 0.0
total_valid_char = []
cur_time = time.time()
while True:
try:
post_sentences, response_sentences = train_data_generator.next()
except StopIteration:
# save model
save_model(exp_dirname, e, word_embeddings, E, G)
# evaluation
eval(args.valid_query_file, args.valid_response_file, args.batch_size,
word_embeddings, E, G, loss_func, args.use_cuda, vocab, args.response_max_len)
break
post_ids = [sentence2id(sent, vocab) for sent in post_sentences]
response_ids = [sentence2id(sent, vocab) for sent in response_sentences]
posts_var, posts_length = padding_inputs(post_ids, None)
responses_var, responses_length = padding_inputs(response_ids, args.response_max_len)
# sort by post length
posts_length, perms_idx = posts_length.sort(0, descending=True)
posts_var = posts_var[perms_idx]
responses_var = responses_var[perms_idx]
responses_length = responses_length[perms_idx]
# 在sentence后面加eos
references_var = torch.cat([responses_var, Variable(torch.zeros(responses_var.size(0),1).long(), requires_grad=False)], dim=1)
for idx, length in enumerate(responses_length):
references_var[idx, length] = SYM_EOS
# show case
#for p, r, ref in zip(posts_var.data.numpy()[:10], responses_var.data.numpy()[:10], references_var.data.numpy()[:10]):
# print ''.join(id2sentence(p, rev_vocab))
# print ''.join(id2sentence(r, rev_vocab))
# print ''.join(id2sentence(ref, rev_vocab))
# print
if args.use_cuda:
posts_var = posts_var.cuda()
responses_var = responses_var.cuda()
references_var = references_var.cuda()
embedded_post = word_embeddings(posts_var)
embedded_response = word_embeddings(responses_var)
_, dec_init_state = E(embedded_post, input_lengths=posts_length.numpy())
log_softmax_outputs = G.supervise(embedded_response, dec_init_state, word_embeddings) # [B, T, vocab_size]
outputs = log_softmax_outputs.view(-1, vocab_size)
mask_pos = mask(references_var).view(-1).unsqueeze(-1)
masked_output = outputs*(mask_pos.expand_as(outputs))
loss = loss_func(masked_output, references_var.view(-1))/(posts_var.size(0))
opt.zero_grad()
loss.backward()
opt.step()
total_loss += loss*(posts_var.size(0))
total_valid_char.append(mask_pos)
if step % args.print_every == 0:
total_loss_val = total_loss.cpu().data.numpy()[0]
total_valid_char_val = torch.sum(torch.cat(total_valid_char, dim=1)).cpu().data.numpy()[0]
logger.info('Step %5d: (per word) training perplexity %.2f (%.1f iters/sec)' % (step, math.exp(total_loss_val/total_valid_char_val), args.print_every/(time.time()-cur_time)))
total_loss = 0.0
total_valid_char = []
total_case_num = 0
cur_time = time.time()
step = step + 1
if __name__ == '__main__':
pretrain()